Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
phạm thanh lâm
Xem chi tiết
Nguyễn Hoàng Minh
16 tháng 10 2021 lúc 10:36

\(=\left(x-y\right)^2+1\ge1>0,\forall x,y\)

OH-YEAH^^
16 tháng 10 2021 lúc 10:38

\(x^2-2xy+y^2+1\)

\(=\left(x-y\right)^2+1\)

Vì \(\left(x-y\right)^2\ge0\) với mọi \(x,y\in R\)

\(\Rightarrow\left(x-y\right)^2+1\ge1\) với mọi \(x,y\in R\)

\(\Rightarrow\left(x-y\right)^2+1>0\) với mọi \(x,y\in R\) (đpcm)

 

Nguyễn Thị Kim Anh
Xem chi tiết
l҉o҉n҉g҉ d҉z҉
11 tháng 8 2017 lúc 14:36

Ta có : x2 - 2xy + y2 + 1 = (x - y)2 + 1

Vì : \(\left(x-y\right)^2\ge0\forall x\in R\)

Nên : \(\left(x-y\right)^2+1\ge1\forall x\in R\)

Suy ra : \(\left(x-y\right)^2+1>0\forall x\in R\)

Vậy x2 - 2xy + y2 + 1 \(>0\forall x\in R\)

Ta có : x - x2 - 1

= -(x2 - x + 1)

\(=-\left(x^2-x+\frac{1}{4}+\frac{3}{4}\right)\)

\(=-\left(x^2-x+\frac{1}{4}\right)-\frac{3}{4}\)

\(=-\left(x-\frac{1}{2}\right)^2-\frac{3}{4}\)

Vì : \(-\left(x-\frac{1}{2}\right)^2\le0\forall x\in R\)

Nên : \(-\left(x-\frac{1}{2}\right)^2-\frac{3}{4}\le-\frac{3}{4}< 0\)

Vậy x - x2 - 1 \(< 0\forall x\in R\)

Nguyễn Thị Kim Anh
11 tháng 8 2017 lúc 17:26

hỏi tí cái chữ A ngược đó là gì vậy bạn

Toàn Khánh
22 tháng 9 2017 lúc 18:45

chữ a ngược là với mọi x

Nguyễn Thị Kim Anh
Xem chi tiết
Thắng Huỳnh
Xem chi tiết
Trần Quốc Khanh
23 tháng 2 2020 lúc 14:29

\(\Leftrightarrow-1-\left(x-y\right)^2\le-1< 0\)

Khách vãng lai đã xóa
Ngô Huy Hoàng
Xem chi tiết
Hoàng Lê Bảo Ngọc
19 tháng 10 2016 lúc 23:03

\(x^2-2xy-x+1+2y^2=x^2-x\left(2y+1\right)+\frac{\left(2y+1\right)^2}{4}-\frac{\left(2y+1\right)^2}{4}+2y^2+1\)

\(=\left(x-\frac{2y+1}{2}\right)^2+\frac{1}{4}\left(2y-1\right)^2+\frac{1}{2}>0\)

Ngô Huy Hoàng
19 tháng 10 2016 lúc 23:14

bn có thể lm rõ hơn dc chứ

Nguyễn Thị Kim Anh
Xem chi tiết
lê thị thu huyền
11 tháng 8 2017 lúc 21:35

\(x^2-2xy+y^2+1\)

\(=\left(x^2-2xy+y^2\right)+1\)

\(=\left(x-y\right)^2+1\)

vì \(\left(x-y\right)^2\ge0\Rightarrow\left(x-y\right)^2+1>0\forall x,y\)

vậy ................

Hồng Đào
Xem chi tiết
#Blue Sky
27 tháng 12 2022 lúc 19:14

Ta có: \(x^2-2xy+y^2+1=\left(x-y\right)^2+1\)

Vì \(\left(x-y\right)^2\ge0\forall x,y\)

Mà \(1>0\)

\(\Rightarrow\left(x-y\right)^2+1>0\forall x,y\left(đpcm\right)\)

Tu Nguyen
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Hiiiii~
21 tháng 4 2017 lúc 18:22

undefined

Phùng Khánh Linh
14 tháng 10 2017 lúc 21:53

a) x2 - 2xy + y2 + 1

= ( x - y)2 + 1

Do : ( x - y)2 lớn hơn hoặc bằng 0 với mọi số tực x và y

--> ( x -y)2 + 1 lớn hơn hoặc bằng 1 > 0 với mọi số thực x và y

Khi và chỉ khi : x - y =0 --> x =y

b) x - x2 - 1

= - ( x2 - x + 1)

= - [ x2 - 2.\(\dfrac{1}{2}\)x + (\(\dfrac{1}{2}\))2 - \(\dfrac{1}{4}+1\)]

= - ( x - \(\dfrac{1}{2}\))2 + \(\dfrac{1}{4}-1\)

= - ( x - \(\dfrac{1}{2}\))2 - \(\dfrac{3}{4}\)

Do : - ( x - \(\dfrac{1}{2}\))2 nhỏ hơn hoặc bằng 0 với mọi số thực x

--> - ( x - \(\dfrac{1}{2}\))2 - \(\dfrac{3}{4}\) nhỏ hơn hoặc bằng - \(\dfrac{3}{4}\)với mọi số thực x

Khi và chỉ khi : x - \(\dfrac{1}{2}\)=0 --> x = \(\dfrac{1}{2}\)

quỳnh phạm
Xem chi tiết
Nhã Doanh
19 tháng 3 2018 lúc 20:30

Ta có:

\(\left(x+y-z\right)^2\ge0\)

=> \(x^2+y^2+z^2-2xy+2xz-2yz\ge0\)

=> \(x^2+y^2+z^2\ge2xy-2xz+2yz\)