Ta có: \(x^2-2xy+y^2+1=\left(x-y\right)^2+1\)
Vì \(\left(x-y\right)^2\ge0\forall x,y\)
Mà \(1>0\)
\(\Rightarrow\left(x-y\right)^2+1>0\forall x,y\left(đpcm\right)\)
Ta có: \(x^2-2xy+y^2+1=\left(x-y\right)^2+1\)
Vì \(\left(x-y\right)^2\ge0\forall x,y\)
Mà \(1>0\)
\(\Rightarrow\left(x-y\right)^2+1>0\forall x,y\left(đpcm\right)\)
chứng minh rằng : x^2 - 2xy + y^2 + 1 > 0 với mọi số thực của x và y
Chứng minh rằng
x^2-2xy+y^2+1>0 với mọi số thực x và y
x-x^2-1<0 với mọi số thực x
Chứng minh rằng
x^2-2xy+y^2+1>0 với mọi số thực x và y
x-x^2-1<0 với mọi số thực x
giúp mình với ah
chứng minh rằng: x^2-2xy-x+1+2y^2>0(với mọi số thực x;y)
chứng minh
a, x^2-2xy+y^2+1>0 với mọi số thực x va y
b, x-x^2-1<0 với mọi số thực x
Chứng minh :
a ) x2 _ 2xy + y2 + 1 > 0 với mọi số thực x và y.
b ) x - x2 - 1 < 0 với mọi số thực x .
các bạn ơi giải giúp mình bài này với nhé !
Chứng minh rằng
2x^2+5y^2+2x-4xy-y+2>0 với mọi x, y
Giải chi tiết giùm mình ạ!
Chứng minh:
x2 - 2xy + y2 +1>0 với mọi số thực x và y.
Chung minh:
a,x2-2xy+y2+1>0 với mọi số thực x và y
b,x-x2-1<0 với mọi số thực x