Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Bao Gia
Xem chi tiết
An Thy
12 tháng 7 2021 lúc 16:39

\(\sqrt{29-4\sqrt{7}}=\sqrt{\left(2\sqrt{7}\right)^2-2.2\sqrt{7}.1+1^2}=\sqrt{\left(2\sqrt{7}-1\right)^2}=\left|2\sqrt{7}-1\right|\)

\(=2\sqrt{7}-1\)

\(\sqrt{19+6\sqrt{2}}=\sqrt{\left(3\sqrt{2}\right)^2+2.3\sqrt{2}.1+1^2}=\sqrt{\left(3\sqrt{2}+1\right)^2}=\left|3\sqrt{2}+1\right|\)

\(=3\sqrt{2}+1\)

\(\sqrt{28-6\sqrt{3}}=\sqrt{\left(3\sqrt{3}\right)^2-2.3\sqrt{3}.1+1^2}=\sqrt{\left(3\sqrt{3}-1\right)^2}=\left|3\sqrt{3}-1\right|\)

\(=3\sqrt{3}-1\)

\(\sqrt{46-6\sqrt{5}}=\sqrt{\left(3\sqrt{5}\right)^2-2.3\sqrt{5}.1+1^2}=\sqrt{\left(3\sqrt{5}-1\right)^2}=\left|3\sqrt{5}-1\right|\)

\(=3\sqrt{5}-1\)

\(\sqrt{49+8\sqrt{3}}=\sqrt{\left(4\sqrt{3}\right)^2+2.4\sqrt{3}.1+1^2}=\sqrt{\left(4\sqrt{3}+1\right)^2}=\left|4\sqrt{3}+1\right|\)

\(=4\sqrt{3}+1\)

\(\sqrt{32-8\sqrt{7}}=\sqrt{\left(2\sqrt{7}\right)^2-2.2\sqrt{7}.2+2^2}=\sqrt{\left(2\sqrt{7}-2\right)^2}=\left|2\sqrt{7}-2\right|\)

\(=2\sqrt{7}-2\)

Nguyễn Lê Phước Thịnh
12 tháng 7 2021 lúc 23:50

\(\sqrt{29-4\sqrt{7}}=2\sqrt{7}-1\)

\(\sqrt{19+6\sqrt{2}}=3\sqrt{2}+1\)

\(\sqrt{28-6\sqrt{3}}=3\sqrt{3}-1\)

\(\sqrt{46-6\sqrt{5}}=3\sqrt{5}-1\)

\(\sqrt{49+8\sqrt{3}}=4\sqrt{3}+1\)

\(\sqrt{32-8\sqrt{7}}=2\sqrt{7}-2\)

๛๖ۣۜH₂ₖ₇ツ
Xem chi tiết
shitbo
20 tháng 5 2021 lúc 11:36

\(\text{Đặt: }\sqrt{6+\sqrt{6+\sqrt{6+....}}}=a\Rightarrow a^2=6+a\Leftrightarrow a^2-a-6=\left(a-3\right)\left(a+2\right)=0\)

thấy ngay a không thể đạt giá trị âm nên 

a=3 thay vào P=0 (vô lí) -> đề sai.

Khách vãng lai đã xóa
manh
Xem chi tiết
Nguyễn Lê Phước Thịnh
12 tháng 8 2023 lúc 15:35

loading...  

Quý Đào
Xem chi tiết
Nguyễn Dung
Xem chi tiết
Nguyễn Dung
2 tháng 12 2019 lúc 21:44

giúp mình với ạ !

Khách vãng lai đã xóa
Anh Tuấn
Xem chi tiết
Bình Lê
4 tháng 7 2017 lúc 16:33

\(A=\sqrt{9-6\sqrt{7}+7}+\sqrt{3-2\sqrt{21}+7}\)

\(=\sqrt{\left(3-\sqrt{7}\right)^2}+\sqrt{\left(\sqrt{7}-\sqrt{3}\right)^2}\)

\(=3-\sqrt{7}+\sqrt{7}-\sqrt{3}\)

\(=3-\sqrt{3}\)

Bình Lê
4 tháng 7 2017 lúc 16:36

\(B=\sqrt{25+2\sqrt{75}+3}+\sqrt{16-2\sqrt{48}+3}\)

\(=\sqrt{\left(5+\sqrt{3}\right)^2}+\sqrt{\left(4-\sqrt{3}\right)^2}\)

\(=5+\sqrt{3}+4-\sqrt{3}\)

\(=9\)

Bình Lê
4 tháng 7 2017 lúc 16:41

\(C=\sqrt{\sqrt{5}-\sqrt{3-\sqrt{20-12\sqrt{5}+9}}}\)

\(=\sqrt{\sqrt{5}-\sqrt{3-\sqrt{\left(2\sqrt{5}-3\right)^2}}}\)

\(=\sqrt{\sqrt{5}-\sqrt{3-2\sqrt{5}+3}}\)

\(=\sqrt{\sqrt{5}-\sqrt{5-2\sqrt{5}+1}}\)

\(=\sqrt{\sqrt{5}-\sqrt{\left(\sqrt{5}-1\right)^2}}\)

\(=\sqrt{\sqrt{5}-\sqrt{5}+1}\)
\(=\sqrt{1}\\ =1\)

Rộp Rộp Rộp
Xem chi tiết
Kiyotaka Ayanokoji
27 tháng 7 2020 lúc 10:00

Trả lời:

\(A=\sqrt{\sqrt{5}-\sqrt{3-\sqrt{29-12\sqrt{5}}}}\)

\(A=\sqrt{\sqrt{5}-\sqrt{3-\sqrt{20-12\sqrt{5}+9}}}\)

\(A=\sqrt{\sqrt{5}-\sqrt{3-\sqrt{\left(2\sqrt{5}-3\right)^2}}}\)

\(A=\sqrt{\sqrt{5}-\sqrt{3-2\sqrt{5}+3}}\)

\(A=\sqrt{\sqrt{5}-\sqrt{6-2\sqrt{5}}}\)

\(A=\sqrt{\sqrt{5}-\sqrt{5-2\sqrt{5}+1}}\)

\(A=\sqrt{\sqrt{5}-\sqrt{\left(\sqrt{5}-1\right)^2}}\)

\(A=\sqrt{\sqrt{5}-\sqrt{5}+1}\)

\(A=\sqrt{1}\)

\(A=1\)

\(B=\frac{\left(5+2\sqrt{6}\right).\left(49-20\sqrt{6}\right).\sqrt{5-2\sqrt{6}}}{9\sqrt{3}-11\sqrt{2}}\)

\(B=\frac{\left(3+2\sqrt{6}+2\right).\left(49-20\sqrt{6}\right).\sqrt{3-2\sqrt{6}+2}}{9\sqrt{3}-11\sqrt{2}}\)

\(B=\frac{\left(\sqrt{3}+\sqrt{2}\right)^2.\left(49-20\sqrt{6}\right).\sqrt{\left(\sqrt{3}-\sqrt{2}\right)^2}}{9\sqrt{3}-11\sqrt{2}}\)

\(B=\frac{\left(\sqrt{3}+\sqrt{2}\right)^2.\left(49-20\sqrt{6}\right).\left(\sqrt{3}-\sqrt{2}\right)}{9\sqrt{33}-11\sqrt{2}}\)

\(B=\frac{\left(\sqrt{3}+\sqrt{2}\right).\left(\sqrt{3}-\sqrt{2}\right).\left(\sqrt{3}+\sqrt{2}\right).\left(49-20\sqrt{6}\right)}{9\sqrt{3}-11\sqrt{2}}\)

\(B=\frac{\left(3-2\right).\left(49\sqrt{3}-60\sqrt{2}+49\sqrt{2}-40\sqrt{3}\right)}{9\sqrt{3}-11\sqrt{2}}\)

\(B=\frac{1.\left(9\sqrt{3}-11\sqrt{2}\right)}{9\sqrt{3}-11\sqrt{2}}\)

\(B=1\)

Khách vãng lai đã xóa
Nobi Nobita
20 tháng 9 2020 lúc 16:01

a) Ta có: \(\sqrt{29-12\sqrt{5}}=\sqrt{20-12\sqrt{5}+9}=\sqrt{\left(2\sqrt{5}-3\right)^2}\)

\(=\left|2\sqrt{5}-3\right|=2\sqrt{5}-3\)

\(\Rightarrow\sqrt{3-\sqrt{29-12\sqrt{5}}}=\sqrt{3-\left(2\sqrt{5}-3\right)}=\sqrt{3-2\sqrt{5}+3}\)

\(=\sqrt{6-2\sqrt{5}}=\sqrt{5-2\sqrt{5}+1}=\sqrt{\left(\sqrt{5}-1\right)^2}\)

\(=\left|\sqrt{5}-1\right|=\sqrt{5}-1\)

\(\Leftrightarrow A=\sqrt{\sqrt{5}-\sqrt{3-\sqrt{29-12\sqrt{5}}}}=\sqrt{\sqrt{5}-\left(\sqrt{5}-1\right)}\)

\(=\sqrt{\sqrt{5}-\sqrt{5}+1}=\sqrt{1}=1\)( đpcm )

Khách vãng lai đã xóa
Bối Vy Vy
Xem chi tiết
Lê Minh Anh
24 tháng 6 2018 lúc 22:22

a)\(\sqrt{28-16\sqrt{3}}=\sqrt{12-2.4.2\sqrt{3}+16}=\sqrt{\left(2\sqrt{3}\right)^2-2.4.2\sqrt{3}+4^2}=\sqrt{\left(2\sqrt{3}-4\right)^2}\)\(=\left|2\sqrt{3}-4\right|=4-2\sqrt{3}\)

b) \(\sqrt{29-12\sqrt{5}}=\sqrt{3^2-2.3.2\sqrt{5}+\left(2\sqrt{5}\right)^2}=\sqrt{\left(3-2\sqrt{5}\right)^2}=2\sqrt{5}-3\)

c)\(\sqrt{23-\sqrt{240}}=\sqrt{23-4\sqrt{15}}=\sqrt{\left(2\sqrt{5}\right)^2-2.\sqrt{3}.2\sqrt{5}+\left(\sqrt{3}\right)^2}\)

\(=\sqrt{\left(2\sqrt{5}-\sqrt{3}\right)^2}=2\sqrt{5}-\sqrt{3}\)

d)\(\sqrt{33-12\sqrt{6}}=\sqrt{\left(2\sqrt{6}\right)^2-2.3.2\sqrt{6}+3^2}=\sqrt{\left(2\sqrt{6}-3\right)^2}=2\sqrt{6}-3\)

Kiyotaka Ayanokoji
22 tháng 7 2020 lúc 9:52

Trả lời:

a)\(\sqrt{28-16\sqrt{3}}\)

\(=\sqrt{16-16\sqrt{3}+12}\)

\(=\sqrt{\left(4-2\sqrt{3}\right)^2}\)

\(=4-2\sqrt{3}\)

b) \(\sqrt{29-12\sqrt{5}}\)

\(=\sqrt{20-12\sqrt{5}+9}\)

\(=\sqrt{\left(2\sqrt{5}-3\right)^2}\)

\(=2\sqrt{5}-3\)

c) \(\sqrt{23-\sqrt{240}}\)

\(=\sqrt{23-4\sqrt{15}}\)

\(=\sqrt{20-4\sqrt{15}+3}\)

\(=\sqrt{\left(2\sqrt{5}-\sqrt{3}\right)^2}\)

\(=2\sqrt{5}-\sqrt{3}\)

d) \(\sqrt{33-12\sqrt{6}}\)

\(=\sqrt{24-12\sqrt{6}+9}\)

\(=\sqrt{\left(2\sqrt{6}-3\right)^2}\)

\(=2\sqrt{6}-3\)

Khách vãng lai đã xóa
Ngọc Nguyễn Ánh
Xem chi tiết
Van Han
15 tháng 5 2018 lúc 22:49

a)\(\sqrt{\sqrt{5}-\sqrt{3-\sqrt{29-12\sqrt{5}}}}=1\)\(\Leftrightarrow\sqrt{\sqrt{5}-\sqrt{3-\sqrt{\left(2\sqrt{5}-3\right)^2}}}=1\)

\(\Leftrightarrow\sqrt{\sqrt{5}-\sqrt{3-2\sqrt{5}+3}}=1\)

\(\Leftrightarrow\sqrt{\sqrt{5}-\sqrt{6-2\sqrt{5}}}=1\)

\(\Leftrightarrow\sqrt{\sqrt{5}-\sqrt{\left(\sqrt{5}-1\right)^2}}=1\)

\(\Leftrightarrow\sqrt{\sqrt{5}-\sqrt{5}+1}=1\)

\(\Leftrightarrow\sqrt{1}=1\) (đpcm)

Van Han
16 tháng 5 2018 lúc 20:25

\(\dfrac{\left(5+2\sqrt{6}\right)\sqrt{5-2\sqrt{6}}}{\sqrt{2}+\sqrt{3}}-1=0\)

\(\Leftrightarrow\dfrac{\left(\sqrt{3}+\sqrt{2}\right)^2\sqrt{\left(\sqrt{3}-\sqrt{2}\right)^2}}{\sqrt{2}+\sqrt{3}}-1=0\)

\(\Leftrightarrow\left(\sqrt{3}+\sqrt{2}\right)\left(\sqrt{3}-\sqrt{2}\right)-1=0\)

\(\Leftrightarrow\left(\sqrt{3}\right)^2-\left(\sqrt{2}\right)^2-1=0\)

\(\Leftrightarrow3-2-1=0\) (đpcm)

linhhsw_2817
Xem chi tiết
Nguyễn Hoàng Minh
10 tháng 9 2021 lúc 16:20

\(a,\left(\sqrt{3}-1\right)^2=3-2\sqrt{3}+1=4-2\sqrt{3}\\ b,\sqrt{4-2\sqrt{3}}-\sqrt{3}=\left(\sqrt{3}-1\right)-\sqrt{3}=-1\)