Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Ẩn danh

Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
11 tháng 4 2018 lúc 12:14

Đáp án A

Phương pháp: Sử dụng khai triển nhị thức Newton:

 

Cách giải:

 

Để tìm hệ số của  x 7 ta cho k = 7, khi đó hệ số của x 7 là  C 20 7

Sonyeondan Bangtan
Xem chi tiết
nguyễn hoàng lê thi
Xem chi tiết
Hoàng Tử Hà
12 tháng 12 2020 lúc 23:16

15/ Mũ 4=> có 4+1=5 số hạng=> số hạng chính giữa là: \(C^2_4.3^{4-2}.x^2.2^2y^2=58x^2y^2\)

18/ \(x.x^k=x^7\Rightarrow k=6\)

\(C^6_9.3^6.2^3=489888\)

19/ \(C^7_7+C^7_8.\left(-1\right)^7+C^7_9.2^2=...\)

Nguyễn Tấn Phong
Xem chi tiết
Nguyễn Lê Phước Thịnh
2 tháng 1 2023 lúc 21:45

SHTQ là:

\(C^k_{30}\cdot x^{30-k}\cdot\left(\dfrac{1}{x}\right)^k=C^k_{30}\cdot x^{30-2k}\)

Hệ số của x^1 là 30-2k=1

=>k=29/2(loại)

=>Ko có x trong khai triển này

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
10 tháng 11 2018 lúc 13:09

 Số hạng chứa x6y14 trong khai triển (x+5y)20 là C2014.x6.(5y)14= 514.C2014.x6.y14 nên hệ số của x6y14 là 514. C2014

Chọn B

Nguyễn Tấn Phong
Xem chi tiết
Nguyễn Lê Phước Thịnh
2 tháng 1 2023 lúc 21:50

SHTQ là:

\(C^k_{30}\cdot x^{30-k}\cdot\left(\dfrac{1}{x}\right)^k=C^k_{30}\cdot x^{30-2k}\)

Số hạng của x^26 tương ứng với 30-2k=26

=>k=2

=>Hệ số là \(C^2_{30}\)

Mai Anh
Xem chi tiết
Nguyễn Việt Lâm
13 tháng 11 2021 lúc 15:47

\(C_n^0+C_n^1+C_n^2=11\)

\(\Rightarrow1+n+\dfrac{n\left(n-1\right)}{2}=11\)

\(\Leftrightarrow n^2+n-20=0\Rightarrow\left[{}\begin{matrix}n=4\\n=-5\left(loại\right)\end{matrix}\right.\)

\(\left(x^3+\dfrac{1}{x^2}\right)^4\) có SHTQ: \(C_4^k.x^{3k}.x^{-2\left(4-k\right)}=C_4^k.x^{5k-8}\)

\(5k-8=7\Rightarrow k=3\)

Hệ số: \(C_4^3=4\)

Pi OFFCIAL
Xem chi tiết
Akai Haruma
22 tháng 12 2021 lúc 9:55

Lời giải:
Theo khai triển Newton:

\((x+\frac{1}{x})^{20}=\sum\limits_{k=0}^{20}C^k_{20}x^k(x^{-1})^{20-k}=\sum\limits_{k=0}^{20}C^k_{20}x^{2k-20}\)

$2k-20=8\Leftrightarrow k=14$

Hệ số của $x^8$ là: $C^{14}_{20}$

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
12 tháng 2 2019 lúc 7:02

Nguyễn Xuân Tài
Xem chi tiết
Nguyễn Lê Phước Thịnh
16 tháng 4 2023 lúc 23:43

a: SHTQ là: \(C^k_{10}\cdot x^{10-k}\cdot\left(\dfrac{2}{x}\right)^k=C^k_{10}\cdot2^k\cdot x^{10-2k}\)

Số hạng ko chứa x tương ứng với 10-2k=0

=>k=5

=>SH đó là 8064

b: SHTQ là; \(C^k_6\cdot x^{6-k}\cdot\left(\dfrac{2}{x^2}\right)^k=C^k_6\cdot2^k\cdot x^{6-3k}\)

Số hạng ko chứa x tương ứng với 6-3k=0

=>k=2

=>Số hạng đó là 60

c: SHTQ là: \(C^k_5\cdot\left(3x^3\right)^{5-k}\cdot\left(-\dfrac{2}{x^2}\right)^k\)

\(=C^k_5\cdot3^{5-k}\cdot\left(-2\right)^k\cdot x^{15-5k}\)

SH chứa x^10 tương ứng với 15-5k=10

=>k=1

=>Hệ số là -810