Lời giải:
Theo khai triển Newton:
\((x+\frac{1}{x})^{20}=\sum\limits_{k=0}^{20}C^k_{20}x^k(x^{-1})^{20-k}=\sum\limits_{k=0}^{20}C^k_{20}x^{2k-20}\)
$2k-20=8\Leftrightarrow k=14$
Hệ số của $x^8$ là: $C^{14}_{20}$
Lời giải:
Theo khai triển Newton:
\((x+\frac{1}{x})^{20}=\sum\limits_{k=0}^{20}C^k_{20}x^k(x^{-1})^{20-k}=\sum\limits_{k=0}^{20}C^k_{20}x^{2k-20}\)
$2k-20=8\Leftrightarrow k=14$
Hệ số của $x^8$ là: $C^{14}_{20}$
Tìm hệ số lớn nhất trong khai triển nhị thức Newton của \(\left(\dfrac{1}{2}+\dfrac{x}{3}\right)^{14}\)
tổng các hệ số nhị thức niuton trong khai triển \(\left(2nx+\frac{1}{2nx^2}\right)^{3n}\) bằng 64 . số hạng không chứa x trong khai triển là bao nhiêu ?
Trong khai triển (x-a)3 .(x+b)6, hệ số của x7 là -36 và không có số hạng chứa x8. Tìm a?
tìm hệ số của số hạng chứa x4 trong khai triển nhị thức (\(\left(\dfrac{x}{3}-\dfrac{3}{x}\right)^{12}\)
Tìm hệ số của số hạng chứa M trong khai triển của nhị thức :
( 1-x+\(x^2\) ) \(^{10}\) . M=x\(^6\)
Tìm hệ số của x8 trong khai triển: \(f\left(x\right)=\left(1+x\right)^{10}+\left(1+x\right)^{11}+\left(1+x\right)^{12}\)
2. Trong khai triển nhị thức ( a +2)^n +6 ( n€N). Có tất cả 17 số hạng . Vậy n bằng?
6. Trong khai triển (2a -1)^6 tổng 3 số hạng đầu là?
7. Trong khai triển ( x - √y )^16 tổng hai số hạng cuối là
Giải những bài toán sau bằng máy tính: (Mấy bạn ghi rõ cách bấm giúp mình với ạ)
1. Trong khai triển nhị thức (x+2)10, hệ số của số hạng chứa x7 bằng?
2. Trong khai triển của (x+y)13, hệ số đi với x5y8 bằng bao nhiêu?
Hệ số của a^2000, b^21 trong khai triển (a+b) ^2021 theo công thức nhị thức Newton là? (trình bày cách giải hộ mình với ạ)