\(Cho \) \(a< b\) \(chứng\) \(minh\) \(rằng\)
\(2020-2019a>2018-2019b\)
Cho a<b ,chứng tỏ rằng 2020 -2019a>2018-2019b
Mk làm theo cách này,các bn xm đc k nhes
Vì a<b(gt) ,thay a=1,b=2 vào bđt 2020-2019 và 2018-2019b ta có :
VT=2020-2019a=2010-2019.1
=>VT=1
VP=2018-2019b=2018-2019.2
=>VP=-2020
Vì 1>-2010 nên VT>VP
Vậy 2020 -2019a>2018-2019b(dpcm)
Ko thể dùng 1 trường hợp cụ thể để chứng minh dạng tổng quát.
Cách chứng minh bài này rất đơn giản:
\(a< b\Rightarrow2019a< 2019b\)
\(\Rightarrow-2019a>-2019b\)
\(\Rightarrow-2019a+2020>-2019b+2020>-2019b+2018\)
Vậy \(2020-2019a>2018-2019b\)
cho \(\dfrac{a}{b}=\dfrac{c}{d}\)Chứng minh rằng
\(\dfrac{2018a-2019b}{2019c+2020d}\)=\(\dfrac{2018c-2018c}{2019a+2020b}\)
Sửa đề: \(\dfrac{2018a-2019b}{2019a+2020b}=\dfrac{2018c-2019d}{2019c+2020d}\)
\(\dfrac{a}{b}=\dfrac{c}{d}\Leftrightarrow\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{2020a}{2020b}=\dfrac{2020c}{2020d}=\dfrac{2019a}{2019c}=\dfrac{2019b}{2019d}=\dfrac{2018a}{2018c}=\dfrac{2018b}{2018d}=\dfrac{2018a-2019b}{2018c-2019d}=\dfrac{2019a+2020b}{2019c+2020d}\\ \Leftrightarrow\dfrac{2018a-2019b}{2019a+2020b}=\dfrac{2018c-2019d}{2019c+2020d}\)
\(\dfrac{2018a-2019b}{2019c-2020d}=\dfrac{2018c-2018c}{2019a+2020b}\)
Sao .... ;-; ;-;
Cho a,b,c>0 thỏa mãn a+b+c=2019
Chứng minh rằng \(\frac{a}{a+\sqrt{2019a+bc}}+\frac{b}{b+\sqrt{2019b+ac}}+\frac{c}{c+\sqrt{2019c+ab}}\le1\)
Ta có: \(2019a+bc=a\left(a+b+c\right)+bc=\left(a+b\right)\left(c+a\right)\ge\left(\sqrt{ab}+\sqrt{ac}\right)^2\)
\(\Rightarrow a+\sqrt{2019a+bc}\ge a+\sqrt{ab}+\sqrt{bc}=\sqrt{a}\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)\)
\(\Rightarrow\frac{a}{a+\sqrt{2019a+bc}}\le\frac{a}{\sqrt{a}\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)}=\frac{\sqrt{a}}{\sqrt{a}+\sqrt{b}+\sqrt{c}}\)
Tương tự cộng vào suy ra điều phải chứng minh
c)-4a+2 và -4b+2
2)so sánh a và b,nếu :
a)2a+4 ≥ 2b+4
b)3a-5 ≤ 3b-5
3)cho a ≤ b,chứng minh:
a)2019a + 2020 ≤ 2019b + 2020
b)-42a - 24 ≥ -42b – 24
3)cho a > b,chứng minh:
a)3a+2 > 3b+2
b)-4a – 5< -4b – 5.
2,
a, Nếu 2a + 4 \(\ge\) 2b + 4
thì 2a \(\ge\) 2b hay a \(\ge\) b
b, Nếu 3a - 5 \(\le\) 3b - 5
thì 3a \(\le\) 3b hay a \(\le\) b
3,
a, Nếu a \(\le\) b thì a - b \(\le\) 0 hay 2019(a - b) \(\le\) 0 hay 2019a \(\le\) 2019b hay 2019a + 2020 \(\le\) 2019b + 2020
b, Nếu a \(\le\) b thì -a \(\ge\) -b hay -42a \(\ge\) -42b hay -42a - 24 \(\ge\) -42b - 24
3,
a, Nếu a > b thì 3a > 3b hay 3a + 2 > 3b + 2
b, Nếu a > b thì -a < -b hay -4a < -4b hay -4a - 5 < -4b - 5
Chúc bn học tốt!!
1.cho a<b chứng tỏ rằng 2020-2019a> 2018-2019b
2, giải bất phương trình 12+3x.(1-x)<_ -3X^2 +6x
Cho tam giác ABC vuông tại A đường cao AH , phâ giác AD. kẻ DK vuông góc với AC(K thuộc AC)
a, cm tam giacs ABC đồng dạng vơi tam giác HAC
b, giả sử AB=6, AC=8, TÍNH BD
c, AC.AD=\(\sqrt{2}\)AB.CK
mọi người giúp mình với cảm ơn nhiều ( có kết luận đầy đủ nha mn)
Cho tỉ lệ thức: \(\frac{a}{b}=\frac{c}{d}\) Chứng minh:
a) \(\frac{a+2019b}{a-2019b}=\frac{c+2019d}{c-2019d}\)
b)\(\frac{2019\left(a+c\right)}{2019a}=\frac{b+d}{b}\)
Cho abc=1 và a,b,c đôi một khác nhau
Tính giá trị P=\(\frac{2018+2019a^3}{a\left(a-b\right)\left(a-c\right)}+\frac{2018+2019b^3}{b\left(b-a\right)\left(b-c\right)}+\frac{2018+2019c^3}{c\left(c-a\right)\left(c-b\right)}\)
cho 3 số a, b, c > 0 thỏa mãn a + b + c = 1. Chứng minh
\(\dfrac{a}{a+\sqrt{2019a+bc}}+\dfrac{b}{b+\sqrt{2019b+ac}}+\dfrac{c}{c+\sqrt{2019c+ab}}\le1\)
Mong mọi người giúp mình với, lâu không dùng bất đẳng thức nên quên. Cám ơn mọi người nhiều!