Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Kiều Anh
Xem chi tiết
Akai Haruma
26 tháng 8 2021 lúc 22:00

Lời giải:

a. $y=\sqrt{x^2+x-2}\geq 0$ (tính chất cbh số học)

Vậy $y_{\min}=0$. Giá trị này đạt tại $x^2+x-2=0\Leftrightarrow x=1$ hoặc $x=-2$
b.

$y^2=6+2\sqrt{(2+x)(4-x)}\geq 6$ do $2\sqrt{(2+x)(4-x)}\geq 0$ theo tính chất căn bậc hai số học

$\Rightarrow y\geq \sqrt{6}$ (do $y$ không âm)

Vậy $y_{\min}=\sqrt{6}$ khi $x=-2$ hoặc $x=4$

$y^2=(\sqrt{2+x}+\sqrt{4-x})^2\leq (2+x+4-x)(1+1)=12$ theo BĐT Bunhiacopxky

$\Rightarrow y\leq \sqrt{12}=2\sqrt{3}$

Vậy $y_{\max}=2\sqrt{3}$ khi $2+x=4-x\Leftrightarrow x=1$

c. ĐKXĐ: $-2\leq x\leq 2$

$y^2=(x+\sqrt{4-x^2})^2\leq (x^2+4-x^2)(1+1)$ theo BĐT Bunhiacopxky

$\Leftrightarrow y^2\leq 8$

$\Leftrightarrow y\leq 2\sqrt{2}$

Vậy $y_{\max}=2\sqrt{2}$ khi $x=\sqrt{2}$

Mặt khác:

$x\geq -2$

$\sqrt{4-x^2}\geq 0$

$\Rightarrow y\geq -2$
Vậy $y_{\min}=-2$ khi $x=-2$

Hung Pham
Xem chi tiết
Nguyễn Việt Lâm
30 tháng 12 2020 lúc 21:55

Chắc bạn ghi nhầm căn thức thứ 2

\(A2\sqrt{2}=2\sqrt{\left(2x+4\right)\left(x^2-2x+4\right)}+2\sqrt{\left(2y+4\right)\left(y^2-2y+4\right)}+2\sqrt{\left(2z+4\right)\left(z^2-2z+4\right)}\)

\(A2\sqrt{2}\le2x+4+x^2-2x+4+2y+4+y^2-2y+4+2z+4+z^2-2z+4\)

\(A2\sqrt{2}\le x^2+y^2+z^2+24=72\)

\(A\le18\sqrt{2}\)

Dấu "=" xảy ra khi \(x=y=z=4\)

konomi
Xem chi tiết
alibaba nguyễn
19 tháng 8 2016 lúc 6:53
A^2 = x + y - 3 + 2√[(x - 2)(y - 3)] <= 1 + (x + y - 3) = 2 vậy A max là √2 khi x = 1,5; y = 2,5
alibaba nguyễn
19 tháng 8 2016 lúc 7:02
Hai cái còn lại làm tương tự
alibaba nguyễn
19 tháng 8 2016 lúc 7:12
2/ GTNN của A là 0 khi x = -11
NGUYỄN MINH HUY
Xem chi tiết
Minh Thọ Nguyễn Bùi
Xem chi tiết
alibaba nguyễn
13 tháng 10 2017 lúc 9:05

\(A=\sqrt{x-3}+\sqrt{y-4}\)

\(\le\sqrt{\left(1+1\right)\left(x-3+y-4\right)}=\sqrt{2.1}=\sqrt{2}\)

Đinh Văn Nam
Xem chi tiết
M1014-AWM
Xem chi tiết
Nguyễn Trọng Chiến
18 tháng 3 2021 lúc 21:07

\(\Rightarrow M=\dfrac{\sqrt{x-1}}{x}+\dfrac{\sqrt{y-4}}{y}=\dfrac{\sqrt{\left(x-1\right)\cdot1}}{x}+\dfrac{4\sqrt{y-4}}{4y}\le\dfrac{x-1+1}{2x}+\dfrac{y-4+4}{4y}=\dfrac{1}{2}+\dfrac{1}{4}=\dfrac{3}{4}\) Dấu = xảy ra \(\Leftrightarrow x=2;y=8\)

Nguyễn Châu
Xem chi tiết
Iceghost
4 tháng 12 2016 lúc 14:45

$B = \sqrt{x-4} + \sqrt{12 -x}$

+) $B^2 = 8 + 2\sqrt{(x-4)(12-x)} \geqslant 8 + 2 \cdot 0 = 8 \implies B \geqslant \sqrt{8}$

Vậy $B_\text{min} = \sqrt{8} \iff (x-4)(12-x) = 0 \iff x =4$ hoặc $x =12 \implies (x;y) =\{ (4;11);(12;3)\}$

+) $B^2 = 8 + 2\sqrt{(x-4)(12-x)} = 8 + 2\sqrt{-x^2 + 16x - 48} = 8 + 2\sqrt{-(x-8)^2 + 16} \leqslant 8 + 2\sqrt{16} = 16 \implies B \geqslant 4$

Vậy $B_\text{max} =4 \iff x = 8 \iff (x;y) = (8;7)$

Khánh Ngọc
Xem chi tiết
Nguyễn Việt Lâm
15 tháng 1 2021 lúc 14:01

Đặt \(\left\{{}\begin{matrix}x=sina\\y=sinb\end{matrix}\right.\) với \(a;b\in\left(0;\dfrac{\pi}{2}\right)\)

\(P=\sqrt{sina}+\sqrt{sinb}+\sqrt[4]{12}.\sqrt{sina.cosb+cosa.sinb}\)

\(P\le\sqrt{2\left(sina+sinb\right)}+\sqrt[4]{12}.\sqrt{sin\left(a+b\right)}\)

Do \(sina+sinb=2sin\dfrac{a+b}{2}cos\dfrac{a-b}{2}\le2sin\dfrac{a+b}{2}\)

\(\Rightarrow P\le2\sqrt{sin\dfrac{a+b}{2}}+\sqrt[4]{12}.\sqrt{sin\left(a+b\right)}=2\sqrt{sint}+\sqrt[4]{12}.\sqrt{sin2t}\)

\(\Rightarrow\dfrac{P}{\sqrt{2}}\le\sqrt{2sint}+\sqrt{\sqrt{3}.sin2t}\Rightarrow\dfrac{P^2}{4}\le2sint+\sqrt{3}sin2t\)

\(\Rightarrow\dfrac{P^2}{8}\le sint\left(1+\sqrt{3}cost\right)\Rightarrow\dfrac{P^4}{64}\le sin^2t\left(1+\sqrt{3}cost\right)^2\le2sin^2t\left(1+3cos^2t\right)\)

\(\Leftrightarrow\dfrac{P^4}{128}\le sin^2t\left(4-3sin^2t\right)=-3sin^4t+4sin^2t\)

\(\Leftrightarrow\dfrac{P^4}{128}\le-3\left(sin^2t-\dfrac{2}{3}\right)^2+\dfrac{4}{3}\le\dfrac{4}{3}\)

\(\Rightarrow P\le4.\sqrt[4]{\dfrac{2}{3}}\)

Dấu "=" xảy ra khi và chỉ khi \(sint=\sqrt{\dfrac{2}{3}}\)