Tìm x :
\(\dfrac{4}{15}+\dfrac{4}{35}+\dfrac{4}{63}+...+\dfrac{4}{399}=\dfrac{x}{49}\)
Tìm x :
\(\dfrac{4}{15}\) + \(\dfrac{4}{35}\) + \(\dfrac{4}{63}\) + ... + \(\dfrac{4}{399}\) = \(\dfrac{x}{49}\)
Ta có : \(\dfrac{4}{15}+\dfrac{4}{35}+\dfrac{4}{63}+...+\dfrac{4}{399}=\dfrac{x}{49}\)
\(\Leftrightarrow2\cdot\left(\dfrac{2}{3.5}+\dfrac{2}{5.7}+\dfrac{2}{7.9}+...+\dfrac{2}{19.21}\right)=\dfrac{x}{49}\)
\(\Leftrightarrow\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{19}-\dfrac{1}{21}=\dfrac{x}{98}\)
\(\Leftrightarrow\dfrac{1}{3}-\dfrac{1}{21}=\dfrac{x}{98}\)
\(\Leftrightarrow\dfrac{2}{7}=\dfrac{x}{98}\Rightarrow x=28\)
Vậy $x=28$
Tính :
\(\dfrac{4}{15}\) + \(\dfrac{4}{35}\) + \(\dfrac{4}{63}\) + ... + \(\dfrac{4}{399}\)
\(\dfrac{4}{15}+\dfrac{4}{35}+...+\dfrac{4}{399}=4.\left(\dfrac{1}{15}+\dfrac{1}{35}+...+\dfrac{1}{399}\right)=4.\left(\dfrac{1}{3.5}+\dfrac{1}{5.7}+...+\dfrac{1}{19.21}\right)=4.\left[\dfrac{1}{2}.\left(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+....+\dfrac{1}{19}-\dfrac{1}{21}\right)\right]=4.\left[\dfrac{1}{2}.\left(\dfrac{1}{3}-\dfrac{1}{21}\right)\right]=2.\left(\dfrac{7-1}{21}\right)=\dfrac{12}{21}=\dfrac{4}{7}\)
Tính: \(A=\dfrac{3}{4}.\dfrac{8}{9}.\dfrac{15}{16}.\dfrac{24}{25}.\dfrac{35}{36}.\dfrac{48}{49}.\dfrac{63}{64}\)
tìm x biết \(\left|x-\dfrac{1}{3}\right|+\left|x-\dfrac{1}{15}\right|+\left|x-\dfrac{1}{35}\right|+\left|x-\dfrac{1}{63}\right|+...+\left|x-\dfrac{1}{399}\right|=-11x\)
Lời giải:
Vế trái luôn không âm (tính chất trị tuyệt đối)
$\Rightarrow -11x\geq 0$
$\Rightarrow x\leq 0$
Do đó: $x-\frac{1}{3}, x-\frac{1}{15},..., x-\frac{1}{399}<0$
PT trở thành:
$\frac{1}{3}-x+\frac{1}{15}-x+...+\frac{1}{399}-x=-11x$
$(\frac{1}{3}+\frac{1}{15}+...+\frac{1}{399})-10x=-11x$
$\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{19.21}=-x$
$\frac{1}{2}(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+..+\frac{1}{19}-\frac{1}{21})=-x$
$\frac{1}{2}(1-\frac{1}{21})=-x$
$\frac{10}{21}=-x$
$\Rightarrow x=\frac{-10}{21}$
Lời giải:
Vế trái luôn không âm (tính chất trị tuyệt đối)
$\Rightarrow -11x\geq 0$
$\Rightarrow x\leq 0$
Do đó: $x-\frac{1}{3}, x-\frac{1}{15},..., x-\frac{1}{399}<0$
PT trở thành:
$\frac{1}{3}-x+\frac{1}{15}-x+...+\frac{1}{399}-x=-11x$
$(\frac{1}{3}+\frac{1}{15}+...+\frac{1}{399})-10x=-11x$
$\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{19.21}=-x$
$\frac{1}{2}(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+..+\frac{1}{19}-\frac{1}{21})=-x$
$\frac{1}{2}(1-\frac{1}{21})=-x$
$\frac{10}{21}=-x$
$\Rightarrow x=\frac{-10}{21}$
a.\(\dfrac{5x+2}{6}-\dfrac{8x-1}{3}=\dfrac{4x+2}{5}-5\)
b.\(x-\dfrac{2x-5}{5}+\dfrac{x+8}{6}=7+\dfrac{x-1}{3}\)
c.\(\dfrac{x+1}{15}+\dfrac{x+2}{7}+\dfrac{x+4}{4}+6=0\)
d.\(\dfrac{x-342}{15}+\dfrac{x-323}{17}+\dfrac{x-300}{19}+\dfrac{x-273}{21}=10\)
e.\(\dfrac{x+97}{125}+\dfrac{x-63}{35}=\dfrac{x-7}{21}+\dfrac{x-77}{49}\)
a. \(\dfrac{5x+2}{6}-\dfrac{8x-1}{3}=\dfrac{4x+2}{5}-5\)
<=> \(5\left(5x+2\right)-10\left(8x-1\right)=6\left(4x+2\right)-6\cdot5\)
<=> \(25x+10-80x+10=24x+12-30\)
<=> \(25x-80x-24x=12-30-10-10\)
<=> \(-79x=-38\)
<=> \(x=\dfrac{-38}{-79}\)
\(x=\dfrac{38}{79}\)
b. \(x-\dfrac{2x-5}{5}+\dfrac{x+8}{6}=7+\dfrac{x-1}{3}\)
<=> \(30\cdot x-6\left(2x-5\right)+5\left(x+8\right)=30\cdot7+10\left(x-1\right)\)
<=> \(30x-12x+30+5x+40=210+10x-10\)
<=> \(30x-12x+5x-10x=210-10-30-40\)
<=> \(13x=130\)
<=> \(x=\dfrac{130}{13}\)
\(x=10\)
c. \(\dfrac{x+1}{15}+\dfrac{x+2}{7}+\dfrac{x+4}{4}+6=0\)
<=> \(28\left(x+1\right)+60\left(x+2\right)+105\left(x+4\right)+420\cdot6=0\)
<=> \(28x+28+60x+120+105x+420+2520=0\)
<=> \(28x+60x+105x=-28-120-420-2520\)
<=> \(193x=-3088\)
<=> \(x=\dfrac{-3088}{193}\)
\(x=-16\)
d. \(\dfrac{x-342}{15}+\dfrac{x-323}{17}+\dfrac{x-300}{19}+\dfrac{x-273}{21}=10\)
<=> \(6783\left(x-342\right)+5985\left(x-323\right)+5355\left(x-300\right)+4845\left(x-273\right)=101745\cdot10\)
<=> \(6783x-2319786+5985x-1933155+5355x-1606500+4845x-1322685=1017450\)
<=> \(6783x+5985x+5355x+4845x=1017450+2319786+1933155+1606500+1322685\)
<=> \(22968x=8199576\)
<=> \(x=\dfrac{8199576}{22968}\)
\(x=357\)
Thực hiện phép tính
a) A=\(\left(\dfrac{\dfrac{4}{15}+\dfrac{4}{35}+\dfrac{4}{63}+.......+\dfrac{4}{399}}{\dfrac{3^2}{8.11}+\dfrac{3^2}{11.14}+\dfrac{3^2}{14.17}+.....+\dfrac{3^2}{197.200}}\right).\dfrac{200720072007}{200820082008}\)
b) B=\(1.\sqrt{2}+2.\sqrt{3}+3.\sqrt{4}+....+9\sqrt{10}\)
c) D = \(\dfrac{2006}{0,20072008...}+\dfrac{2007}{0,020072008...}+\dfrac{2008}{0,0020072008}\)
A=\(\dfrac{2}{15}\)+\(\dfrac{2}{35}\)+\(\dfrac{2}{63}\)+...+\(\dfrac{2}{399}\)
`A =2/15 +2/35 +2/63 +... +2/339`
`= 2/(3.5) +2/(5.7) + 2/(7.9) + ...+2/(19.21)`
`= 1/3 -1/5 +1/5 -1/7 +1/7 -1/9 +... 1/19 -1/21`
`= 1/3 -1/21 = 7/21 -1/21`
`=6/21 = 2/7`
sai rồi,2/7 mới đúng,bài này không cần nhân 2
tìm x a, \(\dfrac{x}{4}\) =\(\dfrac{15}{20}\) b, \(\dfrac{15}{x}\) = \(\dfrac{25}{35}\) c, \(\dfrac{x}{5}\)=\(\dfrac{26}{65}\) d, \(\dfrac{3}{x}\)=\(\dfrac{51}{85}\)
\(a,\dfrac{x}{4}=\dfrac{15}{20}\\ \Rightarrow\dfrac{x}{4}=\dfrac{3}{4}\\ \Rightarrow x=3\\ b,\dfrac{15}{x}=\dfrac{25}{35}\\ \Rightarrow\dfrac{15}{x}=\dfrac{5}{7}\\ \Rightarrow\dfrac{15}{x}=\dfrac{15}{21}\\ \Rightarrow x=21\\ c,\dfrac{x}{5}=\dfrac{26}{65}\\ \Rightarrow\dfrac{x}{5}=\dfrac{2}{5}\\ \Rightarrow x=2\\ d,\dfrac{3}{x}=\dfrac{51}{85}\\ \Rightarrow\dfrac{3}{x}=\dfrac{3}{5}\\ \Rightarrow x=5\)
a,x4=1520⇒x4=34⇒x=3b,15x=2535⇒15x=57⇒15x=1521⇒x=21c,x5=2665⇒x5=25⇒x=2d,3x=5185⇒3x=35⇒x=5
Tìm x, y ∈ Z:
a) \(\dfrac{4}{x}\)=\(\dfrac{y}{-21}\)=\(\dfrac{28}{49}\).
b) \(\dfrac{x}{7}\)=\(\dfrac{9}{y}\) , x > y.
c) \(\dfrac{x}{15}\)=\(\dfrac{3}{y}\) , x < y < 0
a: =>4/x=y/-21=4/7
=>x=7; y=-12
b: =>xy=63
mà x>y
nên \(\left(x,y\right)\in\left\{\left(9;7\right);\left(21;3\right);\left(63;1\right);\left(-7;-9\right);\left(-3;-21\right);\left(-1;-63\right)\right\}\)
c: =>xy=45
mà x<y<0
nên \(\left(x,y\right)\in\left\{\left(-45;-1\right);\left(-15;-3\right);\left(-9;-5\right)\right\}\)