\(1,5+2.1,5.\left(-0,75\right)-\left(-0,75\right)\)
hãy so sánh mỗi số sau
a) \(0,75^{-2,3}\) và \(0,75^{-2,4}\)
b) \(\left(\dfrac{1}{4}\right)^{2023}\) và \(\left(\dfrac{1}{4}\right)^{2024}\)
c) \(\left(3,5\right)^{2023}\) và \(\left(3,5\right)^{2024}\)
a: \(0,75< 1\)
=>Hàm số \(y=0,75^x\) nghịch biến trên R
mà -2,3>-2,4
nên \(0,75^{-2,3}< 0,75^{-2,4}\)
b: \(\dfrac{1}{4}< 1\)
=>Hàm số \(y=\left(\dfrac{1}{4}\right)^x\) nghịch biến trên R
mà 2023<2024
nên \(\left(\dfrac{1}{4}\right)^{2023}>\left(\dfrac{1}{4}\right)^{2024}\)
c: Vì 3,5>1
nên hàm số \(y=3,5^x\) đồng biến trên R
mà 2023<2024
nên \(3,5^{2023}< 3,5^{2024}\)
Đề bài
Tính:
a) \({\left( {\frac{1}{{256}}} \right)^{ - 0,75}} + {\left( {\frac{1}{{27}}} \right)^{ - \frac{4}{3}}}\)
b) \({\left( {\frac{1}{{49}}} \right)^{ - 1,5}} - {\left( {\frac{1}{{256}}} \right)^{ - \frac{2}{3}}}\)
\(a,\left(\dfrac{1}{256}\right)^{-0,75}+\left(\dfrac{1}{27}\right)^{-\dfrac{4}{3}}\\ =256^{\dfrac{3}{4}}+27^{\dfrac{4}{3}}\\ =\sqrt[4]{256^3}+\sqrt[3]{27^4}\\ =145\\ b,\left(\dfrac{1}{49}\right)^{-1,5}-\left(\dfrac{1}{256}\right)^{-\dfrac{2}{3}}\\ =49^{\dfrac{3}{2}}-256^{\dfrac{2}{3}}\\ \simeq343-40,3\\ \simeq302,7\)
(1 điểm) Thực hiện các phép tính:
a) $0,75+\dfrac{9}{5}\left(1,5-\dfrac{2}{3}\right)^2$
b) $\dfrac{-22}{25}+\left(\dfrac{22}{7}-0,12\right)$
0,75 + \(\dfrac{9}{5}\) ( 1,5 - \(\dfrac{2}{3}\) )2
= 0,75 + \(\dfrac{9}{5}\) ( \(\dfrac{3}{2}\) - \(\dfrac{2}{3}\))2
= 0,75 + \(\dfrac{9}{5}\) (\(\dfrac{5}{6}\))2
= 0,75 + \(\dfrac{5}{4}\)
= 0,75 + 1,25
= 2
\(\dfrac{-22}{25}\) + ( \(\dfrac{22}{7}\) - 0,12)
= \(\dfrac{-22}{25}\) + ( \(\dfrac{22}{7}\) - \(\dfrac{3}{25}\))
= \(\dfrac{-22}{25}\) + \(\dfrac{22}{7}\) - \(\dfrac{3}{25}\)
= - ( \(\dfrac{22}{25}\) + \(\dfrac{3}{25}\)) + \(\dfrac{22}{7}\)
= -1 + \(\dfrac{22}{7}\)
= \(\dfrac{-7}{7}\) + \(\dfrac{22}{7}\)
= \(\dfrac{15}{7}\)
cvAjcfajshcfaSsjhcfzsjhcvZXVxhjcvzhjc
cho P = x-4xy + y . tính giá trị của P với \(\left|x\right|\)=1,5 ;y= -0,75
Vì \(\left|x\right|=1,5\)
\(\Rightarrow x=1,5\) hoặc \(x=-1,5\)
Thay \(x=1,5;y=-0,75\) vào P:
\(P=1,5-4.1,5.\left(-0,75\right)+\left(-0,75\right)\)
\(=5,25\)
Thay \(x=-1,5;y=-0,75\) vào P ta đc:
\(P=-1,5-4.\left(-1,5\right).\left(-0,75\right)+\left(-0,75\right)\)
\(=-6,75\)
Vậy P \(\left[\begin{matrix}=5,25\\=-6,75\end{matrix}\right.\)
Tính giá trị của biểu thức:
\(A=\dfrac{-3}{7}.\dfrac{5}{9}+\dfrac{4}{9}.\dfrac{-3}{7}+\left(-2022\right)^0\)
\(B=0,75-\left(2\dfrac{1}{3}+0,75\right)+3^2.\left(-\dfrac{1}{9}\right)\)
\(C=2\dfrac{6}{7}.\left[\left(\dfrac{-7}{5}-\dfrac{3}{2}:\dfrac{-5}{-4}\right)+\left(\dfrac{3}{2}\right)^2\right]\)
\(D=\dfrac{2}{7}+\dfrac{5}{7}.\left(\dfrac{3}{5}-0,25\right).\left(-2\right)^2+35\%\)
\(E=1\dfrac{13}{15}.0,75-\left(\dfrac{11}{20}+25\%\right):1\dfrac{2}{5}\)
\(F=\dfrac{\dfrac{5}{3}-\dfrac{5}{7}+\dfrac{5}{9}}{\dfrac{10}{3}-\dfrac{10}{7}+\dfrac{10}{9}}\)
\(\left(-\dfrac{2}{3}\right).0,75+1\dfrac{2}{3}:\left(-\dfrac{4}{9}\right)+\left(-\dfrac{1}{2}\right)^2\)
\(=\left(-\dfrac{2}{3}\right).\dfrac{3}{4}+\dfrac{5}{3}.\left(-\dfrac{9}{4}\right)+\dfrac{1}{4}=-\dfrac{1}{2}-\dfrac{15}{4}+\dfrac{1}{4}=-\dfrac{7}{2}-\dfrac{1}{2}=-4\)
\(\left(-0,75-\frac{1}{4}\right):\left(-5\right)+\frac{1}{15}-\left(-\frac{1}{15}\right):\left(-3\right)\)
\(\left(\dfrac{7}{8}-0,25\right)\div\left(\dfrac{5}{6}-0,75\right)^2\)
tính
=(7/8-1/4):(5/6-3/4)^2
=(7/8-2/8):(10/12-9/12)^2
=5/8-(1/12)^2
=5/8-1/144
=90/144-1/144
=89/144
Tính:
a)\(\frac{2}{{15}} + \left( {\frac{{ - 5}}{{24}}} \right)\)
b) \(\left( {\frac{{ - 5}}{9}} \right) - \left( { - \frac{7}{{27}}} \right);\)
c)\(\left( { - \frac{7}{{12}}} \right) + 0,75\)
d)\(\left( {\frac{{ - 5}}{9}} \right) - 1,25\)
e)\(0,34.\frac{{ - 5}}{{17}}\)
g) \(\frac{4}{9}:\left( { - \frac{8}{{15}}} \right);\)
h)\(\left( {1\frac{2}{3}} \right):\left( {2\frac{1}{2}} \right)\)
i) \(\frac{2}{5}.\left( { - 1.25} \right)\)
k) \(\left( {\frac{{ - 3}}{5}} \right).\left( {\frac{{15}}{{ - 7}}} \right).3\frac{1}{9}\)
\(a)\frac{2}{{15}} + \left( {\frac{{ - 5}}{{24}}} \right) = \frac{{16}}{{120}} + \left( {\frac{{ - 25}}{{120}}} \right) = \frac{{ - 9}}{{120}} = \frac{{ - 3}}{{40}}\)
b) \(\left( {\frac{{ - 5}}{9}} \right) - \left( { - \frac{7}{{27}}} \right) = \left( {\frac{{ - 15}}{{27}}} \right) + \frac{7}{{27}} = \frac{{ - 8}}{{27}}\)
c)\(\left( { - \frac{7}{{12}}} \right) + 0,75 = \left( { - \frac{7}{{12}}} \right) + \frac{75}{100} \\= \left( { - \frac{7}{{12}}} \right) + \frac{3}{4} \\= \left( { - \frac{7}{{12}}} \right) + \frac{9}{{12}} = \frac{2}{{12}} = \frac{1}{6}\)
d)\(\left( {\frac{{ - 5}}{9}} \right) - 1,25 =\left( {\frac{{ - 5}}{9}} \right) - \frac{125}{100} = \left( {\frac{{ - 5}}{9}} \right) - \frac{5}{4}\\ = \left( {\frac{{ - 20}}{{36}}} \right) - \frac{{45}}{{36}} = \frac{{ - 65}}{{36}}\)
e)\(0,34.\frac{{ - 5}}{{17}} =\frac{{34}}{{100}}.\frac{{ - 5}}{{17}} = \frac{{17}}{{50}}.\frac{{ - 5}}{{17}} = \frac{{ - 1}}{{10}}\)
g) \(\frac{4}{9}:\left( { - \frac{8}{{15}}} \right) = \frac{4}{9}.\left( { - \frac{{15}}{8}} \right) = \frac{{ - 5}}{6}\)
h)\(\left( {1\frac{2}{3}} \right):\left( {2\frac{1}{2}} \right) = \frac{5}{3}:\frac{5}{2} = \frac{5}{3}.\frac{2}{5} = \frac{2}{3}\)
i) \(\frac{2}{5}.\left( { - 1,25} \right) = \frac{2}{5}.\frac{{ - 125}}{100} = \frac{2}{5}.\frac{{ - 5}}{4} = \frac{{ - 1}}{2}\)
k) \(\left( {\frac{{ - 3}}{5}} \right).\left( {\frac{{15}}{{ - 7}}} \right).3\frac{1}{9} = \left( {\frac{{ - 3}}{5}} \right).\left( {\frac{{15}}{{ - 7}}} \right).\frac{{28}}{9}\\ = \frac{{ - 3.3.5.7.4}}{{5.\left( { - 7} \right).3.3}} = 4\)