\(\sqrt{x^2-40x+4000}-\sqrt{x^2+3600}=10\)
GIẢI PT:
a, \(\sqrt{x-10}+\sqrt{30-x}=x^2-40x+400+2\sqrt{10}\)
b, \(\sqrt[3]{x+1}+\sqrt{x+2}=1+\sqrt[3]{x^2+3x+2}\)
a) điều kiện 10 < hoặc bằng x < hoặc bằng 30
VT = căn (x-10) + căn (x-30) nhỏ hơn hoặc bằng căn (12+12 )*( x-10 +30-x) = 2 căn 10
VP = (x-20)2 + 2 căn 10
pt có nghiệm <=> x-10 = x-30 và x-20=0 <=> x = 20
Giải phương trình bằng phương pháp bất đẳng thức
1, \(\sqrt{x^2-6x+11}+\sqrt{x^2-6x+13}+\sqrt[4]{x^2-4x+5}=3+\sqrt{2}\)
2, \(\sqrt{x-10}+\sqrt{30-x}=x^2-40x+400+2\sqrt{10}\)
3, \(x^2-3x+3,5=\sqrt{\left(x^2-2x+2\right)\left(x^2-4x+5\right)}\)
4, \(\sqrt{5x^3+3x^2+3x-2}=\dfrac{x^2}{2}+3x-\dfrac{1}{2}\)
5, \(2\sqrt{7x^3-11x^2+25x-12}=x^2+6x-1\)
cho f(x) = \(\sqrt{5x^2+20}+\sqrt{5x^2-32x+64}+\sqrt{5x^2-40x+100}+\sqrt{5x^2-8x+16}\) Tìm giá trị nhỏ nhất của f(x)
Gửi những ai thích tập luyện thêm:
Giải các phương trình sau:
a) \(\sqrt{x-5}+\sqrt[3]{3-x}=2\)
b) \(\sqrt{2x-3}+\sqrt{7-x}=\sqrt{5-2x}+\sqrt{3x-1}\)
c) \(\sqrt{x+3}+\sqrt{3x+1}=2\sqrt{x}+\sqrt{2x+2}\)
d) \(\sqrt{25x^2-20x+4}+\sqrt{25x^2-40x+16}=2\)
a) ĐKXĐ : \(x\ge5\)
Đặt \(\sqrt{x-5}=a;\sqrt[3]{3-x}=b\)(a \(\ge0\))
Khi đó phương trình thành a + b = 2
Lại có \(b^3+a^2=-2\)
=> HPT : \(\hept{\begin{cases}a+b=2\\b^3+a^2=-2\end{cases}}\Leftrightarrow\hept{\begin{cases}a=2-b\\b^3+\left(2-b\right)^2=-2\end{cases}}\Leftrightarrow\hept{\begin{cases}a=2-b\\b^3+b^2-4b+6=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}a=2-b\\\left(b+3\right)\left(b^2-2b+2\right)=0\end{cases}}\Leftrightarrow\hept{\begin{cases}a=2-b\\b=-3\end{cases}}\Leftrightarrow\hept{\begin{cases}a=5\\b=-3\end{cases}}\)(tm)
a = 5 => x = 30 (tm)
Vậy x = 30 là nghiệm phương trình
d) Ta có \(\sqrt{25x^2-20x+4}+\sqrt{25x^2-40x+16}=0\)
<=> \(\sqrt{\left(5x-2\right)^2}+\sqrt{\left(5x-4\right)^2}=2\)
<=> |5x - 2| + |5x - 4| = 2
Lại có |5x - 2| + |5x - 4| = |5x - 2| + |4 - 5x| \(\ge\left|5x-2+4-5x\right|=2\)
Dấu "=" xảy ra <=> \(\left(5x-2\right)\left(4-5x\right)\ge0\Leftrightarrow\frac{2}{5}\le x\le\frac{4}{5}\)
Vậy \(\frac{2}{5}\le x\le\frac{4}{5}\)là nghiệm phương trình
c) ĐKXĐ : \(\frac{3}{2}\le x\le\frac{5}{2}\)
Phương trình tương đương \(\left(\sqrt{2x-3}+\sqrt{7-x}\right)^2=\left(\sqrt{5-2x}+\sqrt{3x-1}\right)^2\)
\(\Leftrightarrow x+4+2\sqrt{\left(2x-3\right)\left(7-x\right)}=x+4+2\sqrt{\left(5-2x\right)\left(3x-1\right)}\)
\(\Leftrightarrow\sqrt{\left(2x-3\right)\left(7-x\right)}=\sqrt{\left(5-2x\right)\left(3x-1\right)}\)
<=> (2x - 3)(7 - x) = (5 - 2x)(3x - 1)
<=> -2x2 + 17x - 21 = -6x2 + 17x - 5
<=> 4x2 = 16
<=> x2 = 4
<=> \(\orbr{\begin{cases}x=2\\x=-2\left(\text{loại}\right)\end{cases}}\Leftrightarrow x=2\)
Vậy x = 2 là nghiệm phương trình
Giải phương trình: \(\hept{\begin{cases}y^2+\left(4x-1\right)^2=\sqrt[3]{4x\left(8x+1\right)}\\40x^2+x=y\sqrt{14x-1}\end{cases}}\)
Rút gọn: A=\(\sqrt{16x}+2\sqrt{40x}-3\sqrt{90x}\)với \(x\ge0\)cám ơn mấy anh chị
Rút gọn:
a/ \(\sqrt{72a^8\left(x^2-4x+4\right)}\) \(\left(a< 0;x< 2\right)\);
b/ \(\sqrt{40x^6\left(a^2+6x+9\right)}\left(x< 0;a>=-3\right)\)
\(\sqrt{72a^8\left(x^2-4x+4\right)}=\sqrt{72a^8\left(x-2\right)^2}=\sqrt{72}a^4|\left(x-2\right)|=\sqrt{72}a^4\left(2-x\right)\)
\(\sqrt{40x^6\left(a^2+6a+9\right)}=\sqrt{40x^6\left(x+3\right)^2}=\sqrt{40}|x^3\left(x+3\right)|=\sqrt{40}.\left(-x^3\right)\left(3-x\right)\)
\(=-\sqrt{40}x^3\left(3-x\right)\)
\(\sqrt{72a^8\left(x^2-4x+4\right)}\) \(=\sqrt{72a^8\left(x-2\right)^2}\)\(=\sqrt{72}a^4|\left(x-2\right)|=\sqrt{72}a^4\left(2-x\right)\)
tìm giá trị nhỏ nhất của
B=\(\sqrt{25x^2-30x+9}+\sqrt{25x^2-40x+16}\)
\(B=\sqrt{\left(5x-3\right)^2}+\sqrt{\left(5x-4\right)^2}\ge\left|5x-3\right|+\left|4-5x\right|\ge5x-3+4-5x=1\).
Dấu "=" xảy ra khi và chỉ khi \(3\le5x\le4\Leftrightarrow\dfrac{3}{5}\le x\le\dfrac{4}{5}\)
Giải hệ phương trình:
1. \(\left\{{}\begin{matrix}x+3=2\sqrt{\left(3y-x\right)\left(y+1\right)}\\\sqrt{3y-2}-\sqrt{\dfrac{x+5}{2}}=xy-2y-2\end{matrix}\right.\)
2. \(\left\{{}\begin{matrix}\sqrt{2y^2-7y+10-x\left(y+3\right)}+\sqrt{y+1}=x+1\\\sqrt{y+1}+\dfrac{3}{x+1}=x+2y\end{matrix}\right.\)
3. \(\left\{{}\begin{matrix}\sqrt{4x-y}-\sqrt{3y-4x}=1\\2\sqrt{3y-4x}+y\left(5x-y\right)=x\left(4x+y\right)-1\end{matrix}\right.\)
4. \(\left\{{}\begin{matrix}9\sqrt{\dfrac{41}{2}\left(x^2+\dfrac{1}{2x+y}\right)}=3+40x\\x^2+5xy+6y=4y^2+9x+9\end{matrix}\right.\)
5. \(\left\{{}\begin{matrix}\sqrt{xy+\left(x-y\right)\left(\sqrt{xy}-2\right)}+\sqrt{x}=y+\sqrt{y}\\\left(x+1\right)\left[y+\sqrt{xy}+x\left(1-x\right)\right]=4\end{matrix}\right.\)
6. \(\left\{{}\begin{matrix}x^4-x^3+3x^2-4y-1=0\\\sqrt{\dfrac{x^2+4y^2}{2}}+\sqrt{\dfrac{x^2+2xy+4y^2}{3}}=x+2y\end{matrix}\right.\)
7. \(\left\{{}\begin{matrix}x^3-12z^2+48z-64=0\\y^3-12x^2+48x-64=0\\z^3-12y^2+48y-64=0\end{matrix}\right.\)