\(\dfrac{\sqrt{2}+7}{9}+2\left(\sqrt{2}+1\right)y-\sqrt{2}-1=0\)
\(\left\{{}\begin{matrix}\sqrt{9\left(x-1\right)y}=y\left(2+\sqrt{\dfrac{y}{x-1}}\right)\\y^2+xy-5x+7=0\end{matrix}\right.\)
Đk: \(\left\{{}\begin{matrix}y\ge0\\x>1\end{matrix}\right.\)
\(\left\{{}\begin{matrix}\sqrt{9\left(x-1\right)y}=y\left(2+\sqrt{\dfrac{y}{x-1}}\right)\left(1\right)\\y^2+xy-5x+7=0\left(2\right)\end{matrix}\right.\)
Đặt \(\left\{{}\begin{matrix}a=\sqrt{\left(x-1\right)y}\left(a\ge0\right)\\b=\sqrt{\dfrac{y}{x-1}}\left(b\ge0\right)\end{matrix}\right.\)
\(\left(1\right)\Rightarrow3a=ab\left(2+b\right)\)
Với \(a=0\Rightarrow\sqrt{\left(x-1\right)y}=0\Rightarrow y=0\) (vì \(x\ne1\)).
Thay \(y=0\) vào (2) ta được:
\(2^2+x.2-5x+7=0\)
\(\Leftrightarrow x=\dfrac{11}{3}\left(nhận\right)\)
Với \(a\ne0\Rightarrow3=b\left(2+b\right)\)
\(\Leftrightarrow b^2+2b-3=0\)
\(\Leftrightarrow b^2-b+3b-3=0\)
\(\Leftrightarrow b\left(b-1\right)+3\left(b-1\right)=0\)
\(\Leftrightarrow\left(b-1\right)\left(b+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}b=1\left(nhận\right)\\b=-3\left(loại\right)\end{matrix}\right.\)
\(\Rightarrow\sqrt{\dfrac{y}{x-1}}=1\Rightarrow x=y+1\)
Thay vào (2) ta được:
\(y^2+\left(y+1\right)y-5\left(y+1\right)+7=0\)
\(\Leftrightarrow y^2+y^2+y-5y-5+7=0\)
\(\Leftrightarrow2y^2-4y+2=0\)
\(\Leftrightarrow2\left(y-1\right)^2=0\)
\(\Leftrightarrow y=1\Rightarrow x=1+1=2\)
Vậy hệ phương trình đã cho có nghiệm \(\left(x;y\right)\in\left\{\left(\dfrac{11}{3};0\right),\left(2;1\right)\right\}\)
Giải hệ phương trình:
1. \(\left\{{}\begin{matrix}x+3=2\sqrt{\left(3y-x\right)\left(y+1\right)}\\\sqrt{3y-2}-\sqrt{\dfrac{x+5}{2}}=xy-2y-2\end{matrix}\right.\)
2. \(\left\{{}\begin{matrix}\sqrt{2y^2-7y+10-x\left(y+3\right)}+\sqrt{y+1}=x+1\\\sqrt{y+1}+\dfrac{3}{x+1}=x+2y\end{matrix}\right.\)
3. \(\left\{{}\begin{matrix}\sqrt{4x-y}-\sqrt{3y-4x}=1\\2\sqrt{3y-4x}+y\left(5x-y\right)=x\left(4x+y\right)-1\end{matrix}\right.\)
4. \(\left\{{}\begin{matrix}9\sqrt{\dfrac{41}{2}\left(x^2+\dfrac{1}{2x+y}\right)}=3+40x\\x^2+5xy+6y=4y^2+9x+9\end{matrix}\right.\)
5. \(\left\{{}\begin{matrix}\sqrt{xy+\left(x-y\right)\left(\sqrt{xy}-2\right)}+\sqrt{x}=y+\sqrt{y}\\\left(x+1\right)\left[y+\sqrt{xy}+x\left(1-x\right)\right]=4\end{matrix}\right.\)
6. \(\left\{{}\begin{matrix}x^4-x^3+3x^2-4y-1=0\\\sqrt{\dfrac{x^2+4y^2}{2}}+\sqrt{\dfrac{x^2+2xy+4y^2}{3}}=x+2y\end{matrix}\right.\)
7. \(\left\{{}\begin{matrix}x^3-12z^2+48z-64=0\\y^3-12x^2+48x-64=0\\z^3-12y^2+48y-64=0\end{matrix}\right.\)
1) Giải phương trình: a) \(5\sqrt{\dfrac{9x-27}{25}}-7\sqrt{\dfrac{4x-12}{9}}-7\sqrt{x^2-9}+18\sqrt{\dfrac{9x^2-81}{91}}=0\) b) \(\sqrt{x}+\sqrt{y-1}+\sqrt{z-2}=\dfrac{1}{2}\left(x+y+z\right)\)
Ai giúp mình với, mình cần sự giúp đỡ, mai nộp bài rồi
A= \(\dfrac{7\sqrt{a}}{a-9}-\left(\dfrac{\sqrt{a}}{\sqrt{a}-3}-\dfrac{\sqrt{a}-1}{\sqrt{a}+3}\right)\) ĐK:(a≥0, a≠9)
B= \(\left(\dfrac{1}{\sqrt{a}-3}-\dfrac{1}{\sqrt{a}}\right):\left(\dfrac{\sqrt{a}+3}{\sqrt{a}-2}-\dfrac{\sqrt{a}+2}{\sqrt{a}-3}\right)\) ĐK:(a≥0, a≠9)
C= \(\left(\dfrac{a\sqrt{a}}{\sqrt{a}-1}-\dfrac{a^2}{a\sqrt{a}-a}\right).\left(\dfrac{1}{a}-2\right)\) ĐK:(a>0, a≠1)
D= \(\dfrac{a\sqrt{a}+1}{a-1}-\dfrac{a-1}{\sqrt{a}+1}\) ĐK:(a≥0, a≠1)
E= \(\dfrac{a}{a-4}+\dfrac{1}{\sqrt{a}-2}+\dfrac{1}{\sqrt{a}+2}\) ĐK:(a≥0, a≠4)
Giúp mìnk với nha !!!
\(A=\dfrac{7\sqrt{a}}{a-9}-\left(\dfrac{\sqrt{a}}{\sqrt{a}-3}-\dfrac{\sqrt{a}-1}{\sqrt{a}+3}\right)=\dfrac{7\sqrt{a}}{a-9}-\dfrac{\sqrt{a}\left(\sqrt{a}+3\right)-\left(\sqrt{a}-1\right)\left(\sqrt{a}-3\right)}{\left(\sqrt{a}-3\right)\left(\sqrt{a}+3\right)}=\dfrac{7\sqrt{a}}{a-9}-\dfrac{a+3\sqrt{a}-a+3\sqrt{a}+\sqrt{a}-3}{a-9}=\dfrac{3}{a-9}\)\(B=\left(\dfrac{1}{\sqrt{a}-3}-\dfrac{1}{\sqrt{a}}\right):\left(\dfrac{\sqrt{a}+3}{\sqrt{a}-2}-\dfrac{\sqrt{a}+2}{\sqrt{a}-3}\right)=\dfrac{\sqrt{a}-\sqrt{a}+3}{\sqrt{a}\left(\sqrt{a}-3\right)}:\dfrac{a-9-a+4}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-3\right)}=\dfrac{3}{\sqrt{a}\left(\sqrt{a}-3\right)}.\dfrac{\left(\sqrt{a}-3\right)\left(\sqrt{a}-2\right)}{-5}=\dfrac{3\sqrt{a}-6}{-5\sqrt{a}}\)
\(C=\left(\dfrac{a\sqrt{a}}{\sqrt{a}-1}-\dfrac{a^2}{a\sqrt{a}-a}\right).\left(\dfrac{1}{a}-2\right)=\left(\dfrac{a\sqrt{a}}{\sqrt{a}-1}-\dfrac{a^2}{a\left(\sqrt{a}-1\right)}\right).\dfrac{1-2a}{a}=\dfrac{a\sqrt{a}-a}{\sqrt{a}-1}.\dfrac{1-2a}{a}=\dfrac{a\left(\sqrt{a}-1\right)}{\sqrt{a}-1}.\dfrac{1-2a}{a}=1-2a\)\(D=\dfrac{a\sqrt{a}+1}{a-1}-\dfrac{a-1}{\sqrt{a}+1}=\dfrac{a\sqrt{a}+1-\left(a-1\right)\left(\sqrt{a}-1\right)}{a-1}=\dfrac{a\sqrt{a}+1-a\sqrt{a}+a+\sqrt{a}-1}{a-1}=\dfrac{a+\sqrt{a}}{a-1}=\dfrac{\sqrt{a}\left(\sqrt{a}+1\right)}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}=\dfrac{\sqrt{a}}{\sqrt{a}-1}\)
\(E=\dfrac{a}{a-4}+\dfrac{1}{\sqrt{a}-2}+\dfrac{1}{\sqrt{a}+2}=\dfrac{a+\sqrt{a}+2+\sqrt{a}-2}{a-4}=\dfrac{a+2\sqrt{a}}{a-4}=\dfrac{\sqrt{a}\left(\sqrt{a}+2\right)}{\left(\sqrt{a}-2\right)\left(\sqrt{a}+2\right)}=\dfrac{\sqrt{a}}{\sqrt{a}-2}\)
a, \(\dfrac{\sqrt[]{7-2\sqrt[]{6}}}{\sqrt[]{6}-1}\)
b, 2.|x+y|.\(\sqrt[]{\dfrac{1}{x^2+2xy+y^2}}\) (x+y>0)
c, \(\dfrac{\left(x-5\right)^4}{\left(4-x\right)^2}\)-\(\dfrac{x^2-25}{x-4}\)(x<4)
1. Tìm x thuộc Z, biết:
\(9^{x-1}=\dfrac{1}{9}\)
2. Tìm x biết:
\(\dfrac{1}{3}:\sqrt{7-3x^2}=\dfrac{2}{15}\)
3. Tìm các số x,y,z thỏa mãn:
\(\sqrt{\left(x-\sqrt{2}\right)^2}+\sqrt{\left(y+\sqrt{2}\right)^2}+\left|x+y+z\right|=0\)
1) \(9^{x-1}=\dfrac{1}{9}\) (1)
\(\Leftrightarrow3^{2x-2}=3^{-2}\)
\(\Leftrightarrow2x-2=-2\)
\(\Leftrightarrow2x=0\)
\(\Leftrightarrow x=0\)
Vậy tập nghiệm phương trình (1) là \(S=\left\{0\right\}\)
2) \(\dfrac{1}{3}:\sqrt{7-3x^2}=\dfrac{2}{15}\) (2)
\(\Leftrightarrow\dfrac{1}{3}\cdot\dfrac{1}{\sqrt{7-3x^2}}=\dfrac{2}{15}\)
\(\Leftrightarrow\dfrac{1}{3\sqrt{7-3x^2}}=\dfrac{2}{15}\)
\(\Leftrightarrow15=6\sqrt{7-3x^2}\)
\(\Leftrightarrow6\sqrt{7-3x^2}=15\)
\(\Leftrightarrow\sqrt{7-3x^2}=\dfrac{5}{2}\)
\(\Leftrightarrow7-3x^2=\dfrac{25}{4}\)
\(\Leftrightarrow-3x^2=\dfrac{25}{4}-7\)
\(\Leftrightarrow-3x^2=-\dfrac{3}{4}\)
\(\Leftrightarrow x^2=\dfrac{1}{4}\)
\(\Leftrightarrow x=\pm\dfrac{1}{2}\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{2}\\x=\dfrac{1}{2}\end{matrix}\right.\)
Vậy tập nghiệm phương trình (2) là \(S=\left\{-\dfrac{1}{2};\dfrac{1}{2}\right\}\)
Ta có :
\(\left\{{}\begin{matrix}\sqrt{\left(x-\sqrt{2}\right)^2}\ge0\\\sqrt{\left(y+\sqrt{2}\right)^2}\ge0\\\left|x+y+z\right|\ge0\end{matrix}\right.\)
Mà \(\sqrt{\left(x-\sqrt{2}\right)^2}+\sqrt{\left(y+\sqrt{2}\right)^2}+\left|x+y+z\right|=0\\ \Rightarrow\left\{{}\begin{matrix}\sqrt{\left(x-\sqrt{2}\right)^2}=0\\\sqrt{\left(y+\sqrt{2}\right)^2}=0\\\left|x+y+z\right|=0\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}x=\sqrt{2}\\y=-\sqrt{2}\\z=0\end{matrix}\right.\)
Giải phương trình sau:
a) \(\sqrt{4x+20}-3\sqrt{5+x}+\dfrac{4}{3}\sqrt{9x+45}=6\)
b) \(\dfrac{1}{2}\sqrt{x-1}-\dfrac{3}{2}\sqrt{9x-9}+24\sqrt{\dfrac{x-1}{64}}=-17\)
c) \(2x-x^2+\sqrt{6x^2-12x+7}=0\)
d) \(\left(x+1\right)\left(x+4\right)-3\sqrt{x^2+5x+2}=6\)
a: Ta có: \(\sqrt{4x+20}-3\sqrt{x+5}+\dfrac{4}{3}\sqrt{9x+45}=6\)
\(\Leftrightarrow2\sqrt{x+5}-3\sqrt{x+5}+4\sqrt{x+5}=6\)
\(\Leftrightarrow3\sqrt{x+5}=6\)
\(\Leftrightarrow x+5=4\)
hay x=-1
b: Ta có: \(\dfrac{1}{2}\sqrt{x-1}-\dfrac{3}{2}\sqrt{9x-9}+24\sqrt{\dfrac{x-1}{64}}=-17\)
\(\Leftrightarrow\dfrac{1}{2}\sqrt{x-1}-\dfrac{9}{2}\sqrt{x-1}+3\sqrt{x-1}=-17\)
\(\Leftrightarrow\sqrt{x-1}=17\)
\(\Leftrightarrow x-1=289\)
hay x=290
rút gọn
a) \(\left(-7\sqrt{7}\right)\left(-2\sqrt{8}\right)\)
b) \(-\sqrt{33}.3\sqrt{3}\)
c) \(\left(3\sqrt{5}\right).\left(-10\sqrt{3}\right)\)
d) \(\dfrac{1}{2}\sqrt{5}.\left(-6\sqrt{2}\right)\)
e) \(\dfrac{2}{3}\sqrt{7}.\left(-\dfrac{9}{16}\sqrt{3}\right)\)
f) \(15\sqrt{6}:5\sqrt{3}\)
g) \(-25\sqrt{12}:\left(-5\sqrt{6}\right)\)
h) \(36\sqrt{8}:12\sqrt{2}\)
i) \(4\sqrt{27}:\left(-2\sqrt{3}\right)\)
i: =-12*căn 3/2căn 3=-6
h: =72căn 2/12căn 2=6
g: =25căn 12/5căn 6=5căn 2
f: =(15:5)*căn 6:3=3căn 2
d: =-1/2*6*căn 10=-3căn 10
Chứng minh đẳng thức
\(\left(4-\sqrt{7}\right)^2=23-8\sqrt{7}\)
\(\sqrt{9-4\sqrt{5}}-\sqrt{5}=-2\)
\(\dfrac{\sqrt{4-2\sqrt{3}}}{1+\sqrt{2}}:\dfrac{\sqrt{2}-1}{\sqrt{3}+1}=2\)
\(\left(\dfrac{2\sqrt{3}-\sqrt{6}}{\sqrt{8}-2}-\dfrac{\sqrt{216}}{3}\right).\dfrac{1}{\sqrt{6}}=-1,5\)
\(\left(4-\sqrt{7}\right)^2=4^2-2\cdot4\cdot\sqrt{7}+7\)
\(=16-8\sqrt{7}+7=23-8\sqrt{7}\)
\(\sqrt{9-4\sqrt{5}}-\sqrt{5}\)
\(=\sqrt{5-2\cdot\sqrt{5}\cdot2+4}-\sqrt{5}\)
\(=\sqrt{\left(\sqrt{5}-2\right)^2}-\sqrt{5}\)
\(=\left|\sqrt{5}-2\right|-\sqrt{5}\)
\(=\sqrt{5}-2-\sqrt{5}=-2\)
\(\dfrac{\sqrt{4-2\sqrt{3}}}{1+\sqrt{2}}:\dfrac{\sqrt{2}-1}{\sqrt{3}+1}\)
\(=\dfrac{\sqrt{3-2\cdot\sqrt{3}\cdot1+1}}{\sqrt{2}+1}\cdot\dfrac{\sqrt{3}+1}{\sqrt{2}-1}\)
\(=\dfrac{\sqrt{\left(\sqrt{3}-1\right)^2}}{\sqrt{2}+1}\cdot\dfrac{\sqrt{3}+1}{\sqrt{2}-1}\)
\(=\dfrac{\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)}{\left(\sqrt{2}+1\right)\left(\sqrt{2}-1\right)}=\dfrac{3-1}{2-1}=2\)
\(\left(\dfrac{2\sqrt{3}-\sqrt{6}}{\sqrt{8}-2}-\dfrac{\sqrt{216}}{3}\right)\cdot\dfrac{1}{\sqrt{6}}\)
\(=\left(\dfrac{\sqrt{6}\left(\sqrt{2}-1\right)}{2\left(\sqrt{2}-1\right)}-\dfrac{6\sqrt{6}}{3}\right)\cdot\dfrac{1}{\sqrt{6}}\)
\(=\left(\dfrac{1}{2}\sqrt{6}-2\sqrt{6}\right)\cdot\dfrac{1}{\sqrt{6}}\)
\(=\dfrac{1}{2}-2=-\dfrac{3}{2}=-1,5\)