1) \(9^{x-1}=\dfrac{1}{9}\) (1)
\(\Leftrightarrow3^{2x-2}=3^{-2}\)
\(\Leftrightarrow2x-2=-2\)
\(\Leftrightarrow2x=0\)
\(\Leftrightarrow x=0\)
Vậy tập nghiệm phương trình (1) là \(S=\left\{0\right\}\)
2) \(\dfrac{1}{3}:\sqrt{7-3x^2}=\dfrac{2}{15}\) (2)
\(\Leftrightarrow\dfrac{1}{3}\cdot\dfrac{1}{\sqrt{7-3x^2}}=\dfrac{2}{15}\)
\(\Leftrightarrow\dfrac{1}{3\sqrt{7-3x^2}}=\dfrac{2}{15}\)
\(\Leftrightarrow15=6\sqrt{7-3x^2}\)
\(\Leftrightarrow6\sqrt{7-3x^2}=15\)
\(\Leftrightarrow\sqrt{7-3x^2}=\dfrac{5}{2}\)
\(\Leftrightarrow7-3x^2=\dfrac{25}{4}\)
\(\Leftrightarrow-3x^2=\dfrac{25}{4}-7\)
\(\Leftrightarrow-3x^2=-\dfrac{3}{4}\)
\(\Leftrightarrow x^2=\dfrac{1}{4}\)
\(\Leftrightarrow x=\pm\dfrac{1}{2}\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{2}\\x=\dfrac{1}{2}\end{matrix}\right.\)
Vậy tập nghiệm phương trình (2) là \(S=\left\{-\dfrac{1}{2};\dfrac{1}{2}\right\}\)
Ta có :
\(\left\{{}\begin{matrix}\sqrt{\left(x-\sqrt{2}\right)^2}\ge0\\\sqrt{\left(y+\sqrt{2}\right)^2}\ge0\\\left|x+y+z\right|\ge0\end{matrix}\right.\)
Mà \(\sqrt{\left(x-\sqrt{2}\right)^2}+\sqrt{\left(y+\sqrt{2}\right)^2}+\left|x+y+z\right|=0\\ \Rightarrow\left\{{}\begin{matrix}\sqrt{\left(x-\sqrt{2}\right)^2}=0\\\sqrt{\left(y+\sqrt{2}\right)^2}=0\\\left|x+y+z\right|=0\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}x=\sqrt{2}\\y=-\sqrt{2}\\z=0\end{matrix}\right.\)