Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Tran Linh Nhi
Xem chi tiết
Hoàng Hương Giang
Xem chi tiết
Midoriya Izuku
24 tháng 11 2023 lúc 22:10

Để tìm a và b, ta cần tìm hai số tự nhiên a và b thỏa mãn các điều kiện đã cho. 

Vì ab = 128 và BCNN(a, b) = 64, ta có thể suy ra rằng a và b phải là các ước số của 128 và cùng chia hết cho 64. 

Danh sách các ước số của 128 là: 1, 2, 4, 8, 16, 32, 64, 128.
Vì a > b, nên ta có thể thử các cặp ước số (a, b) theo thứ tự giảm dần.

- Nếu a = 128 và b = 32, ta có ab = 128 * 32 = 4096, không thỏa mãn ab = 128.
- Nếu a = 64 và b = 64, ta có ab = 64 * 64 = 4096, không thỏa mãn ab = 128.
- Nếu a = 32 và b = 64, ta có ab = 32 * 64 = 2048, không thỏa mãn ab = 128.
- Nếu a = 16 và b = 64, ta có ab = 16 * 64 = 1024, không thỏa mãn ab = 128.
- Nếu a = 8 và b = 64, ta có ab = 8 * 64 = 512, không thỏa mãn ab = 128.
- Nếu a = 4 và b = 64, ta có ab = 4 * 64 = 256, không thỏa mãn ab = 128.
- Nếu a = 2 và b = 64, ta có ab = 2 * 64 = 128, thỏa mãn ab = 128.

Vậy a = 2 và b = 64 là hai số tự nhiên thỏa mãn a > b, ab = 128 và BCNN(a, b) = 64.

Hoàng Hương Giang
Xem chi tiết
Nguyễn Lê Phước Thịnh
24 tháng 11 2023 lúc 22:52

\(a\cdot b=BCNN\left(a,b\right)\cdotƯCLN\left(a,b\right)\)

=>\(ƯCLN\left(a,b\right)=\dfrac{128}{64}=2\)

=>\(\left\{{}\begin{matrix}a=2k\\b=2e\end{matrix}\right.\)

a>b>0 nên 2k>2e>0

=>k>e>0

\(a\cdot b=128\)

=>\(2k\cdot2e=128\)

=>\(k\cdot e=\dfrac{128}{4}=32\)

mà k>e>0

nên \(\left(k,e\right)\in\left\{\left(32;1\right);\left(16;2\right);\left(8;4\right)\right\}\)

=>\(\left(a,b\right)\in\left\{\left(64;2\right);\left(16;8\right);\left(32;4\right)\right\}\)

mà BCNN(a,b)=64

nên a=64 và b=2

Deadpool
Xem chi tiết
Nguyen Thi Cam Ly
Xem chi tiết
Đào Gia Phong
Xem chi tiết
Mặc Chinh Vũ
8 tháng 8 2018 lúc 17:10

Cho a - b = 7; ab = 60,Tính: a + b,Toán học Lớp 8,bà i tập Toán học Lớp 8,giải bà i tập Toán học Lớp 8,Toán học,Lớp 8

Vô danh
Xem chi tiết
Lê Phương Mai
27 tháng 3 2022 lúc 8:53

tra gút gồ đe=))

Xyz OLM
27 tháng 3 2022 lúc 9:05

Đề HSG Nghệ An ak bạn 

P = \(n^4-1=\left(n^2-1\right)\left(n^2+1\right)=\left(n-1\right)\left(n+1\right)\left(n^2+1\right)\)

\(=\left(n-1\right)\left(n+1\right)\left(n^2-4+5\right)=\left(n-2\right)\left(n+2\right)\left(n-1\right)\left(n+1\right)+5\left(n-1\right)\left(n+1\right)\)

\(⋮5\Leftrightarrow Q=\left(n-2\right)\left(n-1\right)\left(n+1\right)\left(n+2\right)⋮5\)

mà n không chia hết cho 5 => có dạng n = 5k + 1 ;5k + 2 ; 5k + 3 ;5k + 4 (k \(\in Z\)

Khi n = 5k + 1 => n - 1 \(⋮5\Rightarrow Q⋮5\Rightarrow P⋮5\)

tương tự với n = 5k + 2 ; n = 5k + 3 ; n = 5k + 4 thì Q \(⋮5\Rightarrow P⋮5\)

Nguyễn Việt Lâm
27 tháng 3 2022 lúc 15:05

b. 

Điều duy nhất cần chú ý trong bài toán này: \(n^4\equiv1\left(mod5\right)\) với mọi số nguyên n ko chia hết cho 5

Do đó:

- Nếu cả 5 số a;b;c;d;e đều ko chia hết cho 5 thì vế trái chia hết cho 5, vế phải ko chia hết cho 5 (ktm)

- Nếu cả 5 số a;b;c;d;e đều chia hết cho 5 thì do chúng là số nguyên tố

\(\Rightarrow a=b=c=d=e=5\)

Thay vào thỏa mãn

- Nếu có k số (với \(1\le k\le4\)) trong các số a;b;c;d;e chia hết cho 5, thì vế phải chia hết cho 5, vế phải chia 5 dư \(5-k\ne\left\{0;5\right\}\) nên ko chia hết cho 5 \(\Rightarrow\) ktm

Vậy \(\left(a;b;c;d;e\right)=\left(5;5;5;5;5\right)\) là bộ nghiệm nguyên tố duy nhất

Thang Thang
Xem chi tiết
『Kuroba ム Tsuki Ryoo...
10 tháng 4 2023 lúc 20:48

\(\text{#TNam}\)

`a,` \(\text{Xét Tam giác ABD và Tam giác AED có:}\)

`AB = AE (g``t)`

\(\widehat{BAD}=\widehat{EAD} (\text {tia phân giác} \) \(\widehat{BAE})\)

`\text {AD chung}`

`=> \text {Tam giác ABD = Tam giác AED (c-g-c)}`

`b,`

\(\text{Vì Tam giác ABD = Tam giác AED (a)}\)

`->`\(\widehat{ADB}=\widehat{ADE} (\text {2 góc tương ứng})\)

`-> \text {AD là tia phân giác}` \(\widehat{BDE}\)

\(\text{Xét Tam giác ABC:}\)

`AC > AB (g``t)`

\(\text{Theo định lý của quan hệ giữa góc và cạnh đối diện trong 1 tam giác}\)

`->`\(\widehat{ABC}>\widehat{ACB}.\) 

loading...

29. Đoàn Phương Nghi
Xem chi tiết
YangSu
28 tháng 6 2023 lúc 11:07

\(VT=\left(\sqrt{\dfrac{a}{b}}-\sqrt{\dfrac{b}{a}}\right):\left(a-b\right)\\ =\left(\dfrac{\sqrt{a}}{\sqrt{b}}-\dfrac{\sqrt{b}}{\sqrt{a}}\right).\dfrac{1}{a-b}\\ =\dfrac{\sqrt{a}.\sqrt{a}-\sqrt{b}.\sqrt{b}}{\sqrt{ab}}.\dfrac{1}{a-b}\\ =\dfrac{\sqrt{a^2}-\sqrt{b^2}}{\sqrt{ab}}.\dfrac{1}{a-b}\\ =\dfrac{a-b}{\sqrt{ab}}.\dfrac{1}{a-b}\\ =\dfrac{1}{\sqrt{ab}}=VP\left(dpcm\right)\)

Nguyễn Lê Phước Thịnh
28 tháng 6 2023 lúc 11:06

\(VT=\dfrac{a-b}{\sqrt{ab}}\cdot\dfrac{1}{a-b}=\dfrac{1}{\sqrt{ab}}=VP\)