Bài 6. Cho ∆ABC vuông tại A(AB
Bài 6. Cho ∆ABC vuông tại A(AB
Đề không đầy đủ. Bạn xem lại đề.
Bài 5: Cho ABC vuông cân tại A. Biết AB cm = 2 . Tính BC
Bài 6: Cho ABC vuông cân tại A. Biết BC cm = 2 . Tính AB, AC.Mk cần gấp cho buổi tối nay.Giúp mk vsTam giác ABC vuông cân tại A
=> AB = AC = 2
Áp dụng định lý Pytago vào tam giác vuông ABC có :
AB2 + AC2 = BC2
<=> 22 + 22 = BC2
<=> BC2 = 8
<=> BC = \(\sqrt{8}\)cm
6) Tam giác ABC vuông cân tại A
=> AB = AC
Áp dụng định lý Pytago vào tam giác vuông ABC có :
AB2 + AC2 = BC2
=> 2.AB2 = BC2 (AB = AC)
=> 2.AB2 = 22
=> AB2 = 2
=> AB = AC = \(\sqrt{2}\)(cm)
Trả lời:
Bài 5:
Xét tam giác ABC vuông cân tại A, có:
BC2 = AB2 + AC2 ( định lí Py-ta-go )
=> BC2 = 22 + 22 ( vì AB = AC do tam giác ABC cân tại A )
=> BC2 = 8
=> BC = \(\sqrt{8}\left(cm\right)\)
Vậy BC = \(\sqrt{8}\left(cm\right)\)
Bài 6:
Xét tam giác ABC vuông cân tại A, có:
AB2 + AC2 = BC2 ( định lí Py-ta-go )
=> 2.AB2 = BC2 ( vì AB = AC do tam giác ABC cân tại A )
=> 2.AB2 = 22
=> AB2 = 22 : 2
=> AB2 = 2
=> AB = \(\sqrt{2}\left(cm\right)\)
=> AC = \(\sqrt{2}\left(cm\right)\)
Vậy AB = AC = \(\sqrt{2}\left(cm\right)\)
Bài 6:Cho tam giác ABC vuông tại A, có đường cao AH. Cho AB = 6cm, AC = 8cm.
a) Tính AH, HB.
b) Vẽ HM vuông AB tại M, HN ^ AC tại N. Chứng minh AM.AB = AN.AC.
c) Gọi K là trungđiểm BC. Chứng minh AK vuông MN.
d) Tính \(\dfrac{S_{ANM}}{S_{ABC}}\)
Mình đang cần gấp bài này. Mong các bạn giúp mình nhé. Cảm ơn các bạn
Bài 3: Cho tam giác ABC vuông tại A có AC=20cm. Kẻ AH vuông góc với BC. Biết BH=9cm,HC=16cm. Tính độ dài cạnh AB, AH?
Bài 6: Cho tam giác ABC cân tại A. Kẻ AH vuông góc với BC tại H. Cho BH=2cm,AB=4cm. Tính chu vi tam giác ABC.
Bài 3 :
\(BC=HC+HB=16+9=25\left(cm\right)\)
\(BC^2=AB^2+AC^2\Rightarrow AB^2=BC^2-AC^2=25^2-20^2=625-400=225=15^2\)
\(\Rightarrow AB=15\left(cm\right)\)
\(AH^2=HC.HB=16.9=4^2.3^2\Rightarrow AH=3.4=12\left(cm\right)\)
Bài 6:
\(AB=AC=4\left(cm\right)\) (Δ ABC cân tại A)
\(BH=HC=2\left(cm\right)\) (Ah là đường cao, đường trung tuyến cân Δ ABC)
\(BC=BH+HC=2+2=4\left(cm\right)\)
Chu vi Δ ABC :
\(4+4+4=12\left(cm\right)\)
Bài 6 : cho tam giác ABC vuông tại A, Có BC = 26 cm, AB =AC = 5:12. Tính độ dài AB và AC
Giup mk !!
Bài tập :
1/ Cho ∆ABC vuông tại B biết AB= 9cm; AC= 15cm. Tính các tỉ số lượng giác của 𝐴̂.
2/ Cho ∆ABC vuông tại A, đường cao AH. Biết AB= 12cm; BH= 6 cm. viết các tỉ số lượng giác của 𝐵̂ rối suy ra các tỉ số lượng giác của 𝐶̂?
3/ Cho ∆ MNP vuông tại M, đường cao MI. Biết 𝑁̂= 60độ ; NP=5cm.Tính MN và MP .(Sử dụng bảng tỉ số lượng giác của các góc đặc biệt để tính TSLG của góc 60độ)
Bài 6: Cho tam giác ABC vuông tại A, AB = 4cm, AC = 3 cm, trung tuyến AD, kẻ DK vuông góc với với AB, kẻ DH vuông góc với AC
a. Tứ giác AKDH là hình gì? Vì sao?
b. Tính độ dài AD
c. Tính diện tích tam giác ABD
Bài 7: Cho ABC vuông ở A (AB < AC ), đường cao AH. Gọi D là điểm đối xứng của A qua H. Đường thẳng kẻ qua D song song với AB cắt BC và AC lần lượt ở M và N. Chứng minh:
a. Tứ giác ABDM là hình thoi.
b. AM CD .
c. Gọi I là trung điểm của MC; chứng minh IN HN.
Bài 6:
a: Xét tứ giác AKDH có
\(\widehat{AKD}=\widehat{AHD}=\widehat{KAH}=90^0\)
Do đó: AKDH là hình chữ nhật
b: Ta có: ΔABC vuông tại A
mà AD là đường trung tuyến
nên AD=BC/2=2,5(cm)
a. Tứ giác AKDH là hình chữ nhật , vì có góc \(DKA=KAH=DHA=90^o\)
b, áp dụng đl pytago vào tam giác vuông ABC có :
\(BC^2=AB^2+AC^2\Leftrightarrow BC=\sqrt{4^2+3^2}=5cm\)
vì AD là trung tuyến tam giác vuông ABC nên :
\(AD=\dfrac{1}{2}BC=\dfrac{1}{2}.5=2,5cm\)
c,vì AKDH là hình chữ nhật nên : DH//KA
mà D là trung điểm BC
=>H là trung điểm AC
<=>AH=\(\dfrac{1}{2}AC=\dfrac{1}{2}.3=1,5cm\)
vì AH = 1,5 cm nên => KD cũng = 1,5cm (AKDH là hình chữ nhật)
\(S_{ABD}=\dfrac{1}{2}.AB.KD=\dfrac{1}{2}.4.1,5=3cm^2\)
bài 3;cho tam giác abc vuông tại a biết ab=2cm tính bc
bài 4;cho tam giác abc vuông tại a biết bc=2cm.tính ab,ac
bài 5.cho tam giác abc vuông tại a
a)tính ab biết bc=10cm,ac=8cm.b)tính ac biết bc=12 cm,ab=10cm
Bài 1:Cho tam giác ABC vuông tại A,đường cao AH.Biết AB=15,AC=20,tính các đoạn thẳng AH,BH,CH,BC
Bài 2:Cho tam giác ABC vuông tại A,đường cao AH=12,cạnh huyền BC=25
a)tính BH
b)Tính AB,AC
Bài 3:Cho tam giác ABC,đường cao AH \(\perp\)BC.Biết AB=6,CH=6,4
a)Tính BH
b)Tính AC.
Hình vẽ chung cho cả ba bài.
Bài 1:
\(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}=\frac{1}{15^2}+\frac{1}{20^2}=\frac{1}{144}\)
\(\Rightarrow AH^2=144\Rightarrow AH=12\)
\(BH=\sqrt{AB^2-AH^2}=\sqrt{15^2-12^2}=\sqrt{81}=9\)
\(CH=\sqrt{AC^2-AH^2}=\sqrt{20^2-12^2}=\sqrt{256}=16\)
\(\Rightarrow BC=BH+CH=9+16=25\)
Bài 2,3 bạn nhìn hình vẽ và sử dụng hệ thức lượng để tính tiếp như bài 1.
Bài 2: Bài giải
Đặt BH = x (0 < x < 25) (cm) => CH = 25 - x (cm)
Ta có : \(AH^2=BH\cdot CH\text{ }\Rightarrow\text{ }x\left(25-x\right)=144\text{ }\Rightarrow\text{ }x^2-25x+144=0\)
\(\left(x-9\right)\left(x-16\right)=0\text{ }\Rightarrow\orbr{\begin{cases}x=9\\x=16\end{cases}}\left(tm\right)\)
Nếu BH = 9 cm thì CH = 16 cm \(\Rightarrow\text{ }AB=\sqrt{AH^2+BH^2}=\sqrt{9^2+12^2}=15\text{ }\left(cm\right)\)
\(AC=\sqrt{AH^2+CH^2}=\sqrt{12^2+16^2}=20\text{ }\left(cm\right)\)
Nếu BH = 16 cm thì CH = 9 cm
\(\Rightarrow\text{ }AB=\sqrt{AH^2+BH^2}=\sqrt{12^2+16^2}=20\text{ }\left(cm\right)\)
\(AC=\sqrt{AH^2+CH^2}=\sqrt{9^2+12^2}=15\text{ }\left(cm\right)\)
bạn cho mình hỏi tại sao AH2 =BH.HC??