Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
illumina
Xem chi tiết
Vui lòng để tên hiển thị
20 tháng 7 2023 lúc 8:21

Đk: `1 <=x <=7`.

Đặt `sqrt(7-x) = a, sqrt(x-1) = b`.

Phương trình trở thành: `b^2+1 + 2a = 2b + ab + 1`.

`<=> b^2 + 2a = 2b + ab.`

`<=> b(b-2) = a(b-2)`

`<=> (b-a)(b-2) = 0`

`<=> a =b` hoặc `b = 2.`

`@ a = b => 7 - x = x - 1`

`<=> 8 = 2x <=> x = 4`.

`@ b = 2 => sqrt(x-1) = 2`

`<=> x - 1 = 4`

`<=> x = 5`.

Vậy `x = 4` hoặc `x = 5`.

Trên con đường thành côn...
20 tháng 7 2023 lúc 8:26

\(\text{ĐKXĐ:}1\le x\le7\)

PT đã cho tương đương với:

\(x-1-2\sqrt{x-1}+2\sqrt{7-x}-\sqrt{x-1}.\sqrt{7-x}=0\)

\(\Leftrightarrow\sqrt{x-1}\left(\sqrt{x-1}-2\right)-\sqrt{7-x}\left(\sqrt{x-1}-2\right)=0\)

\(\Leftrightarrow\left(\sqrt{x-1}-\sqrt{7-x}\right)\left(\sqrt{x-1}-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-1}=\sqrt{7-x}\\\sqrt{x-1}=2\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x-1=7-x\\x-1=4\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=4\left(tm\right)\\x=5\left(tm\right)\end{matrix}\right.\)

Vậy pt có tập nghiệm \(S=\left\{4;5\right\}\)

 

Pham Quang Huy
Xem chi tiết
Agatsuma Zenitsu
6 tháng 2 2020 lúc 22:51

\(b,x+2\sqrt{7-x}=2\sqrt{x-1}+\sqrt{-x^2+8x-7}+1\)

Đặt: \(\hept{\begin{cases}\sqrt{x-1}=a\\\sqrt{7-x}=b\end{cases}}\)Ta được pt mới: \(a^2+2b=2a+ab\Leftrightarrow\left(a-2\right)\left(a-b\right)=0\)

Với \(a=2\Rightarrow x=5\)Với \(a=b\Rightarrow x=2\)
Khách vãng lai đã xóa
Cố Tử Thần
7 tháng 2 2020 lúc 8:51

cái thứ 1 nhân liên hợp đi 

sau đó nhân chéo lên vs vế phải

rồi rút gọn

bình lên

giải pt là đc

Khách vãng lai đã xóa
Nguyễn Tấn Dũng
Xem chi tiết
Nguyễn Thành Trương
3 tháng 2 2019 lúc 13:54

x + 2√(7-x) = 2√(x -1) + √(-x²+8x-7) + 1
<=> x-1 + 2√(7-x) = 2√(x-1) + √(x-1)(7-x)
đk xác định: 1 ≤ x ≤ 7 (*)
pt <=> (x-1) - √(x-1)(7-x) + 2√(7-x) - 2√(x-1) = 0
<=> [√(x-1)-√(7-x)].√(x-1) - 2[√(x-1)-√(7-x)] = 0
<=> [√(x-1)-√(7-x)].[√(x-1)-2] = 0

* √(x-1) = 2 <=> x = 5 (thỏa (*))
* √(x-1) - √(7-x) = 0 <=> √(x-1) = √(7-x) <=> x - 1 = 7 - x
<=> x = 4 (thỏa (*))
Vậy pt có 2 nghiệm là: x = 4 hoặc x = 5

Hoàng Thị Mai Trang
Xem chi tiết
Aeris
Xem chi tiết
Nguyễn Huỳnh Minh Thư
Xem chi tiết
Đỗ Hương Giang
Xem chi tiết
Kimian Hajan Ruventaren
Xem chi tiết
Nguyễn Việt Lâm
8 tháng 4 2021 lúc 21:55

a.

ĐKXĐ: \(1\le x\le7\)

\(\Leftrightarrow x-1-2\sqrt{x-1}+2\sqrt{7-x}-\sqrt{\left(x-1\right)\left(7-x\right)}=0\)

\(\Leftrightarrow\sqrt{x-1}\left(\sqrt{x-1}-2\right)-\sqrt{7-x}\left(\sqrt{x-1}-2\right)=0\)

\(\Leftrightarrow\left(\sqrt{x-1}-\sqrt{7-x}\right)\left(\sqrt{x-1}-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-1}=\sqrt{7-x}\\\sqrt{x-1}=2\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=7-x\\x-1=4\end{matrix}\right.\)

\(\Leftrightarrow...\)

Nguyễn Việt Lâm
8 tháng 4 2021 lúc 22:01

b. ĐKXĐ: ...

Biến đổi pt đầu:

\(x\left(y-1\right)-\left(y-1\right)^2=\sqrt{y-1}-\sqrt{x}\)

Đặt \(\left\{{}\begin{matrix}\sqrt{x}=a\ge0\\\sqrt{y-1}=b\ge0\end{matrix}\right.\)

\(\Rightarrow a^2b^2-b^4=b-a\)

\(\Leftrightarrow b^2\left(a+b\right)\left(a-b\right)+a-b=0\)

\(\Leftrightarrow\left(a-b\right)\left(b^2\left(a+b\right)+1\right)=0\)

\(\Leftrightarrow a=b\)

\(\Leftrightarrow\sqrt{x}=\sqrt{y-1}\Rightarrow y=x+1\)

Thế vào pt dưới:

\(3\sqrt{5-x}+3\sqrt{5x-4}=2x+7\)

\(\Leftrightarrow3\left(x-\sqrt{5x-4}\right)+7-x-3\sqrt{5-x}=0\)

\(\Leftrightarrow\dfrac{3\left(x^2-5x+4\right)}{x+\sqrt{5x-4}}+\dfrac{x^2-5x+4}{7-x+3\sqrt{5-x}}=0\)

\(\Leftrightarrow\left(x^2-5x+4\right)\left(\dfrac{3}{x+\sqrt{5x-4}}+\dfrac{1}{7-x+3\sqrt{5-x}}\right)=0\)

\(\Leftrightarrow...\)

Phạm Thị Thu Trang
Xem chi tiết