5(x2-1) -10=30
a) 2(7x+10)+5=3(2x-3)-9x
b) (x+1)(2x-30=(2x-10)(x+5)
c) 2x+x(x+1)(x-1)=(x+1)(x2-x+1)
d) (x-1)3-x(x+1)2=5x(2-x)-11(x+2)
a: =>14x+20+5=6x-9-9x
=>14x+25=-3x-9
=>17x=-34
=>x=-2
b: =>\(2x^2-30x+2x-30=2x^2+10x-10x-50\)
=>-28x-30=-50
=>-28x=-20
=>x=20/28=5/7
c: =>2x+x^3-x=x^3+1
=>x=1
d: =>x^3-3x^2+3x-1-x(x^2+2x+1)=10x-2x^2-11x-22
=>x^3-3x^2+3x-1-x^3-2x^2-x=-2x^2-x-22
=>-5x^2+2x-1+2x^2+x+22=0
=>-3x^2+3x+21=0
=>x^2-x-7=0
=>\(x=\dfrac{1\pm\sqrt{29}}{2}\)
Số nào sau đây là nghiệm chung của 2 phương trình x2 - 30 = x và x2 + 7x +10 = 0
A. 1 B. -5 C. 6 D. -2
Phân tích các đa thức sau thành nhân tử:
1) x3 - 7x + 6
2) x3 - 9x2 + 6x + 16
3) x3 - 6x2 - x + 30
4) 2x3 - x2 + 5x + 3
5) 27x3 - 27x2 + 18x - 4
6) x2 + 2xy + y2 - x - y - 12
7) (x + 2)(x +3)(x + 4)(x + 5) - 24
8) 4x4 - 32x2 + 1
9) 3(x4 + x2 + 1) - (x2 + x + 1)2
10) 64x4 + y4
11) a6 + a4 + a2b2 + b4 - b6
12) x3 + 3xy + y3 - 1
13) 4x4 + 4x3 + 5x2 + 2x + 1
14) x8 + x + 1
15) x8 + 3x4 + 4
16) 3x2 + 22xy + 11x + 37y + 7y2 +10
17) x4 - 8x + 63
1) \(x^2-7x+6=x^3+1-7x-7=\left(x^3+1\right)-7\left(x+1\right)=\left(x+1\right)\left(x^2-x-6\right)\)
2) \(x^3-9x^2+6x+16\)
\(\left(x^3+1\right)-\left[\left(9x^2-6x+1\right)-16\right]\)
\(=\left(x^3+1\right)-\left[\left(3x-1\right)^2-16\right]=\left(x^3+1\right)-\left(3x-1+4\right)\left(3x-1-4\right)\)\(=\left(x^3+1\right)-3\left(3x-5\right)\left(x+1\right)\)\(=\left(x+1\right)\left[x^2-x+1-9x+15\right]=\left(x+1\right)\left(x^2-10x+16\right)\)
\(=\left(x+1\right)\left[x\left(x-2\right)-8\left(x-2\right)\right]\)\(\left(x+1\right)\left(x-2\right)\left(x-8\right)\)
3) \(x^3-6x^2-x+30\)
\(=x^3-5x^2-x^2+5x-6x+30\)
\(=x^2\left(x-5\right)-x\left(x-5\right)-6\left(x-5\right)\)
\(=\left(x-5\right)\left(x^2-x-1\right)\)
4) \(2x^3-x^2+5x+3=\left(2x^3+x^2\right)-\left(2x^2+x\right)+\left(6x+3\right)\)
\(=x^2\left(2x+1\right)-x\left(2x+1\right)+3\left(2x+1\right)\)
\(=\left(2x+1\right)\left(x^2-x+3\right)\)
5) \(27x^3-27x^2+18x-4=\left(27x^3-1\right)-\left(27x^2-18x+3\right)\)
\(=\left(3x-1\right)\left(9x^2+3x+1\right)-3\left(9x^2-6x+1\right)\)
\(=\left(3x-1\right)\left(9x^2+3x+1\right)-3\left(3x-1\right)^2\)
\(=\left(3x-1\right)\left(9x^2+3x+1-9x+3\right)=\left(3x-1\right)\left(9x^2-6x+4\right)\)
gửi phần này trước còn lại làm sau !!! tk mk nka !!!
6) \(\left(x+y\right)^2-\left(x+y\right)-12\)\(=\left(x+y\right)^2-2\cdot\frac{1}{2}\left(x+y\right)+\frac{1}{4}-\frac{49}{4}\)
\(=\left(x+y-\frac{1}{2}\right)^2-\left(\frac{7}{2}\right)^2\)\(=\left(x+y-\frac{1}{2}-\frac{7}{2}\right)\left(x+y-\frac{1}{2}+\frac{7}{2}\right)\)
\(=\left(x-4\right)\left(x+3\right)\)
7) \(\left(x+2\right)\left(x+5\right)\left(x+3\right)\left(x+4\right)-24\) (NHÂN x + 2 vs x + 5 và x + 3 vs x + 4 )
\(=\left(x^2+7x+10\right)\left(x^2+7x+12\right)-24\)
ĐẶT \(x^2+7x+11=y\) ta được :
\(\left(y+1\right)\left(y-1\right)-24=y^2-1-24\)
\(=y^2-25=\left(y-5\right)\left(y+5\right)\)
8) \(4x^4-32x^2+1=4x^4+4x^2+1-36x^2\)
\(=\left(2x^2+1\right)^2-\left(6x\right)^2\)\(=\left(2x^2-6x+1\right)\left(2x^2+6x+1\right)\)
9) sai đề rùi bạn ơi ! đề đúng nè
\(3\left(x^4+x^2+1\right)-\left(x^2+x+1\right)^2\)
Ta thấy :
\(x^4+x^2+1=\left(x^4+2x^2+1\right)-x^2\)\(=\left(x^2+1\right)^2-x^2=\left(x^2+x+1\right)\left(x^2-x+1\right)\)
Thay vào biểu thức bài cho ta được :
\(3\left(x^2-x+1\right)\left(x^2+x+1\right)-\left(x^2+x+1\right)^2\)
\(=\left(x^2+x+1\right)\left(3x^2-3x+3-x^2-x-1\right)\)
\(=\left(x^2+x+1\right)\left(2x^2-4x+2\right)\)
\(=2\left(x^2+x+1\right)\left(x-1\right)^2\)
bài ở trên câu 3 : kết luận là \(\left(x-3\right)\left(x^2-x-6\right)\)bạn sửa lại giúp mk nka !!! Th@nk !!! Tk Mk vs
Thực hiện phép tính:
1)(x+x2-6):(x+3)
2)(x+x2-30):(x+6)
3)(5-3x+6x2):(2x-1)
\(1,=\left(x+3\right)\left(x-2\right):\left(x+3\right)=x-2\\ 2,=\left(x-5\right)\left(x+6\right):\left(x+6\right)=x-5\\ 3,=\left[3x\left(2x-1\right)-5\right]:\left(2x-1\right)=3x.dư.\left(-5\right)\)
1)\(\left(x+x^2-6\right):\left(x+3\right)=\left[x\left(x+3\right)-2\left(x+3\right)\right]:\left(x+3\right)=\left[\left(x+3\right)\left(x-2\right)\right]:\left(x+3\right)=x-2\)
2) \(\left(x+x^2-30\right):\left(x+6\right)=\left[x\left(x+6\right)-5\left(x+6\right)\right]:\left(x+6\right)=\left[\left(x+6\right)\left(x-5\right)\right]:\left(x+6\right)=x-5\)
3) \(\left(5-3x+6x^2\right):\left(2x-1\right)=\left[3x\left(2x-1\right)+5\right]:\left(2x-1\right)=3x+\dfrac{5}{2x-1}\)
Phân tích các đa thức sau thành nhân tử:
1) x3 - 7x + 6
2) x3 - 9x2 + 6x + 16
3) x3 - 6x2 - x + 30
4) 2x3 - x2 + 5x + 3
5) 27x3 - 27x2 + 18x - 4
6) x2 + 2xy + y2 - x - y - 12
7) (x + 2)(x +3)(x + 4)(x + 5) - 24
8) 4x4 - 32x2 + 1
9) 3(x4 + x2 + 1) - (x2 + x + 1)2
10) 64x4 + y4
11) a6 + a4 + a2b2 + b4 - b6
12) x3 + 3xy + y3 - 1
13) 4x4 + 4x3 + 5x2 + 2x + 1
14) x8 + x + 1
15) x8 + 3x4 + 4
16) 3x2 + 22xy + 11x + 37y + 7y2 +10
17) x4 - 8x + 63
a,\(x^3-7x+6\)
\(=x^3-2x^2+2x^2-4x-3x+6\)
\(=\left(x^3-2x^2\right)+\left(2x^2-4x\right)-\left(3x-6\right)\)
\(=x^2.\left(x-2\right)+2x.\left(x-2\right)-3.\left(x-2\right)\)
\(=\left(x-2\right).\left(x^2+2x-3\right)\)
\(=\left(x-2\right).\left(x^2-x+3x-3\right)\)
\(=\left(x-2\right).\left[\left(x^2-x\right)+\left(3x-3\right)\right]\)
\(=\left(x-2\right).\left[x.\left(x-1\right)+3.\left(x-1\right)\right]\)
\(=\left(x-2\right).\left(x-1\right).\left(x+3\right)\)
b,\(x^3-9x^2+6x+16\)
\(=x^3-8x^2-x^2+8x-2x+16\)
\(=\left(x^3-8x^2\right)-\left(x^2-8x\right)-\left(2x-16\right)\)
\(=x^2.\left(x-8\right)-x.\left(x-8\right)-2.\left(x-8\right)\)
\(=\left(x-8\right).\left(x^2-x-2\right)\)
\(=\left(x-8\right).\left(x^2+x-2x-2\right)\)
\(=\left(x-8\right).\left[\left(x^2+x\right)-\left(2x+2\right)\right]\)
\(=\left(x-8\right).\left[x.\left(x+1\right)-2.\left(x+1\right)\right]\)
\(=\left(x-8\right).\left(x+1\right).\left(x-2\right)\)
c,\(x^3-6x^2-x+30\)
\(=x^3-5x^2-x^2+5x-6x+30\)
\(=\left(x^3-5x^2\right)-\left(x^2-5x\right)-\left(6x-30\right)\)
\(=x^2.\left(x-5\right)-x.\left(x-5\right)-6.\left(x-5\right)\)
\(=\left(x-5\right).\left(x^2-x-6\right)\)
\(=\left(x-5\right).\left(x^2+2x-3x-6\right)\)
\(=\left(x-5\right).\left[\left(x^2+2x\right)-\left(3x+6\right)\right]\)
\(=\left(x-5\right).\left[x.\left(x+2\right)-3.\left(x+2\right)\right]\)
\(=\left(x-5\right).\left(x+2\right).\left(x-3\right)\)
Chúc bạn học tốt!!!
d,\(2x^3-x^2+5x+3\)
\(=2x^3+x^2-2x^2-x+6x+3\)
\(=\left(2x^3+x^2\right)-\left(2x^2+x\right)+\left(6x+3\right)\)
\(=x^2.\left(2x+1\right)-x.\left(2x+1\right)+3.\left(2x+1\right)\)
\(=\left(2x+1\right).\left(x^2-x+3\right)\)
e, \(27x^3-27x^2+18x-4\)
\(=27x^3-9x^2-18x^2+6x+12x-4\)
\(=\left(27x^2-9x^2\right)-\left(18x^2-6x\right)+\left(12x-4\right)\)
\(=9x^2.\left(3x-1\right)-6x.\left(3x-1\right)+4.\left(3x-1\right)\)
\(=\left(3x-1\right).\left(9x^2-6x+4\right)\)
Chúc bạn học tốt!!!
7, \(\left(x+2\right).\left(x+3\right).\left(x+4\right).\left(x+5\right)-24\)
\(=\left[\left(x+2\right).\left(x+5\right)\right].\left[\left(x+3\right).\left(x+4\right)\right]-24\)
\(=\left(x^2+5x+2x+10\right).\left(x^2+4x+3x+12\right)-24\)
\(=\left(x^2+7x+10\right).\left(x^2+7x+12\right)-24\)(1)
Đặt \(t=x^2+7x+10\Rightarrow t+2=x^2+7x+12\)
\(\Rightarrow\left(1\right)=t.\left(t+2\right)-24\)
\(=t^2+2t-24=t^2-4t+6t-24\)
\(=\left(t^2-4t\right)+\left(6t-24\right)=t.\left(t-4\right)+6.\left(t-4\right)\)
\(=\left(t-4\right).\left(t+6\right)\) (2)
Vì \(t=x^2+7x+10\) nên:
(2) \(=\left(x^2+7x+10-4\right).\left(x^2+7x+10+6\right)\)
\(=\left(x^2+7x+6\right).\left(x^2+7x+16\right)\)
\(=\left(x^2+x+6x+6\right).\left(x^2+7x+16\right)\)
\(=\left[\left(x^2+x\right)+\left(6x+6\right)\right].\left(x^2+7x+16\right)\)
\(=\left[x.\left(x+1\right)+6.\left(x+1\right)\right].\left(x^2+7x+16\right)\)
\(=\left(x+1\right).\left(x+6\right).\left(x^2+7x+16\right)\)
Chúc bạn học tốt!!!
Một gen có hiệu số giữa G với A bằng 15% số nuclêôtit của gen. Trên mạch thứ nhất của gen có 10%T và 30%X. Kết luận đúng về gen nói trên
A. A1 = 7,5%, T1 = 10%, G1 = 2,5%, X1 = 30%.
B. A1 = 10%, T1 = 25%, G1 = 30%, X1 = 35%
C. A2 = 10%, T2 = 25%, G2 = 30%, X2 = 35%
D. A2 = 10%, T2 = 7,5%, G2 = 30%, X2 = 2,5%
Chọn C. A2 = 10%, T2 = 25%, G2 = 30%, X2 = 35%
Theo đề có G - A = 15%, lại có G + A = 50%. Giải ra ta đc : A = T = 17,5% , G =X = 32,5%
Ta có T1 = 10% = A2 => A1 =17,5×2 -10 = 25%= T2
X1 =30% =G2 => G1 = 32,5× 2 -30%= 35%=X2
10(x+\(\dfrac{1}{x}\))2 +5(x2+\(\dfrac{1}{x^2}\))2-5(x2+\(\dfrac{1}{x^2}\))(x+\(\dfrac{1}{x}\))2=(x-5)2-5
Tìm các số x1, x2, x3, x4, x5 biết \(\dfrac{x1-1}{5}=\dfrac{x2-2}{4}=\dfrac{x3-3}{3}=\dfrac{x4-4}{2}=\dfrac{x5-5}{1}vàx1+x2+x3+x4+x5=30\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x_1-1}{5}=\dfrac{x_2-2}{4}=\dfrac{x_3-3}{3}=\dfrac{x_4-4}{2}=\dfrac{x_5-5}{1}\)
\(=\dfrac{\left(x_1-1\right)+\left(x_2-2\right)+\left(x_3-3\right)+\left(x_4-4\right)+\left(x_5-5\right)}{5+4+3+2+1}\)
\(=\dfrac{\left(x_1+x_2+x_3+x_4+x_5\right)-\left(1+2+3+4+5\right)}{15}\)
\(=\dfrac{30-15}{15}=1\)
\(\Rightarrow x_1=x_2=x_3=x_4=x_5=6\)
Vậy...
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x1-1}{5}\)=\(\dfrac{x2-2}{4}\)\(\dfrac{x3-3}{3}\)=\(\dfrac{x4-4}{2}\)=\(\dfrac{x5-5}{1}\)=\(\dfrac{x1-1+x2-2+x3-3+x4-4+x5-5}{5+4+3+2+1}\)=\(\dfrac{x1+x2+x3+x4+x5-\left(1+2+3+4+5\right)}{15}\)=\(\dfrac{30-15}{15}\)=\(\dfrac{15}{15}\)=1
\(\dfrac{x1-1}{5}\)=1 => x1-1=5 => x1 =6
\(\dfrac{x2-2}{4}\)=1 => x2-2=4 => x2 =6
\(\dfrac{x3-3}{3}\)=1 => x3-3=3 => x3 =6
\(\dfrac{x4-4}{2}\)=1 => x4-4=2 => x4 =6
\(\dfrac{x5-5}{1}\)=1 => x5-5=1 => x5 = 6
Vậy x1=x2=x3=x4=x5 =6
Thực hiện phép tính:
a) ( 2 x 3 + 4 x 2 + 5x +10): (2 x 2 + 5);
b) ( x 3 + 2 x 2 - 1): (2 x 2 + x +1).