3xy-x+y-2=0
c/m : x^2 - 3xy + y^2 >= 0 với mọi giá trị của xy
x^2 - 4/3xy + y^2 >= 0
.....
Sai đề. Ví dụ: x = y = 1 => x2 - 3xy + y2 = 12 - 3.1.1 + 12 = -1
1)Tìm x,y thỏa mãn:
x2-3xy+2y2 = 0 và 2x2 - 3xy + 5 = 0
2) Tìm x,y thỏa mãn:
(x-y)2 + 3(x-y) = 4 và 2x + 3y = 12
x^2 + 3xy + 2y^2 = 0
=> x^2 + xy + 2xy + 2y^2 = 0
=> x(x+y) + 2y ( x+ y ) = 0 =
=> ( x+ 2y)( x + y ) = 0
=> x = -2y hoặc x = -y
(+) x = -2y thay vào ta có :
8y^2 + 6y + 5 = 0 giải ra y => x
(+) thay x = -y ta có :
2y^2 - 3y + 5 = 0 tương tự
Tìm x;y biết: \(x^2-3xy+2y^2=0\) và \(2x^2-3xy+9=0\)
a/ \(x^2-3xy+2y^2=0\Leftrightarrow(x^2-2xy)-(xy-2y^2)=0.\) \(\Leftrightarrow x\left(x-2y\right)-y\left(x-2y\right)=0\Leftrightarrow\left(x-2y\right)\left(x-y\right)=0.\) \(\Leftrightarrow\orbr{\begin{cases}x=y\\x=2y\end{cases},với..x,y\in R.}\)
- Với x = y thay vào phương trình 2x2 - 3xy + 9 = 0 thì được phương trình : 2x2 - 3x2 + 9 = 0 Tức là x2 = 9 Vậy x = y =3 và x = y = - 3.
- Với x = 2y Thay vào phương trình 2x2 - 3xy + 9 = 0 được 8y2 - 6y2 + 9 = 0 Tức là 2y2 + 9 = 0 Phương trình vô nghiệm.
Trả lời x= y = 3 và x = y = - 3 .
Tính giá trị biểu thức
A=\(2x+2y+3xy\left(x+y\right)+5\left(x^3y_{ }^2+x^2y^3\right)\)
tại x+y=0
B=\(3xy\left(x+y\right)+2x^3y+2x^2y^2\)
tại x+y=0
a: \(A=2\left(x+y\right)+3xy\left(x+y\right)+5x^2y^2\left(x+y\right)=0\)
b: \(B=3xy\left(x+y\right)+2x^2y\left(x+y\right)=0\)
\(\Rightarrow\)A=2(x+y)+3xy(x+y)+5x2y2(x+y)
Thay x+y=0 vào A
\(\Rightarrow\)A=0
Biết x+y=0,tính giá trị của đa thức sau :
C=2x+2y+3xy(x+y)+5(x^3y^2)+2
D= 3xy(x+y)+2x^3y+2x^2y^2+5
2x+2y+3xy.(x+y)+5.(x^3.y^2+x^2.y^3)+4 biết x+y=0
\(2x+2y+3xy\left(x+y\right)+5\left(x^3y^2+x^2y^3\right)+4=2\left(x+y\right)+3xy\left(x+y\right)+5x^2y^2\left(x+y\right)+4=2.0+3xy.0+5x^2y^2.0+4=4\)
\(2x+2y+3xy\left(x+y\right)+5\left(x^3y^2+x^2y^3\right)+4\)
\(=2\left(x+y\right)+3xy\left(x+y\right)+5\left(xy\right)^2\cdot\left(x+y\right)+4\)
=4
1/tìm các cặp số nguyên (x;y) thỏa mãn:\(5x^2+2xy+y^2-4x-40=0\)0
2/tìm các số nguyên x;y thỏa mãn:\(3xy+x+15y-44=0\)
3/gtp nghiệm nguyên :\(2x^2+3xy-2y^2=7\)
\(3xy+x+15y-44=0\)
\(3y\left(x+5\right)+\left(x+5\right)-49=0\)
\(\left(x+5\right)\left(3y+1\right)=49\)
Vì x;y là số nguyên \(\Rightarrow\hept{\begin{cases}x+5\in Z\\3y+1\in Z\end{cases}}\)
Có \(\left(x+5\right)\left(3y+1\right)=49\)
\(\Rightarrow\left(x+5\right)\left(3y+1\right)\in\text{Ư}\left(49\right)=\left\{\pm1;\pm7;\pm49\right\}\)
b tự lập bảng nhé~
Tính A+B, A-B, B-A
a, A=x\(^2\)y+0,xy\(^3\)-7,5x\(^3\)y\(^2\)+x\(^3\)
B=3xy\(^3\)-x\(^2\)y+5,5x\(^3\)y\(^2\)
b, A=x\(^5\)+xy+0,3y\(^2\)-2
B=x\(^2\)y\(^3\)+5+1,3y\(^2\)
c, A=x\(^2\)y+xy\(^2\)-5x\(^2\)y\(^2\)+x\(^3\)
B=3xy\(^2\)-x\(^2\)y+x\(^2\)y\(^2\)
Cho x,y > 0 thỏa mãn x + 4/y ≤ 2 tìm gtln của P = 2xy / x² + 3xy + y²
\(2\ge\dfrac{4}{y}+x\ge2\sqrt{\dfrac{4x}{y}}\Rightarrow\dfrac{y}{x}\ge4\)
\(\dfrac{2}{P}=\dfrac{x^2+3xy+y^2}{xy}=\dfrac{x}{y}+\dfrac{y}{x}+3=\left(\dfrac{x}{y}+\dfrac{y}{16x}\right)+\dfrac{15}{16}.\dfrac{y}{x}+3\ge2\sqrt{\dfrac{xy}{16xy}}+\dfrac{15}{16}.4+3=\dfrac{29}{4}\)
\(\Rightarrow P\le\dfrac{8}{29}\)
Dấu "=" xảy ra khi \(\left(x;y\right)=\left(1;4\right)\)