Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Văn A
Xem chi tiết
Nguyễn Lê Phước Thịnh
9 tháng 12 2023 lúc 18:33

\(3+3^3+3^5+3^7+...+3^{31}\)

\(=\left(3+3^3\right)+\left(3^5+3^7\right)+...+\left(3^{29}+3^{31}\right)\)

\(=\left(3+3^3\right)+3^4\left(3+3^3\right)+...+3^{28}\left(3+3^3\right)\)

\(=30\cdot\left(1+3^4+...+3^{28}\right)⋮30\)

Tuquynh Tran
Xem chi tiết
Hồng Nhan
17 tháng 10 2021 lúc 16:54

undefined

Gia Hân
Xem chi tiết

\(S=3+3^2+3^3+3^4+3^5+3^6+3^7+3^8+3^9\\ =\left(3+3^2+3^3\right)+3^3.\left(3+3^2+3^3\right)+3^6.\left(3+3^2+3^3\right)\\ =39+3^3.39+3^6.39\\ =-39.\left(-1-3^3-3^6\right)⋮\left(-39\right)\)

Nguyễn Minh Dương
30 tháng 6 2023 lúc 16:21

S = 3 + 32 + 33 + 34 + 35 + 3+ 37 + 38 + 39

S = ( 3 + 32 + 33 ) +3+ 35 + 36 + 37 + 38 + 3

S = 39 + 34 + 35 + 36 + 37 + 38 + 39

Vì 39 ⋮ -39

<=> S ⋮ -39

Nguyễn Lê Hoàng Bách
Xem chi tiết
Toru
29 tháng 10 2023 lúc 20:20

\(B=3+3^2+3^3+3^4+3^5+3^6+3^7+3^8\\=(3+3^2)+(3^3+3^4)+(3^5+3^6)+(3^7+3^8)\\=3\cdot(1+3)+3^3\cdot(1+3)+3^5\cdot(1+3)+3^7\cdot(1+3)\\=3\cdot4+3^3\cdot4+3^5\cdot4+3^7\cdot4\\=4\cdot(3+3^3+3^5+3^7)\)

Vì \(4\cdot(3+3^3+3^5+3^7) \vdots 4\)

nên \(B\vdots4\).

『Kuroba ム Tsuki Ryoo...
29 tháng 10 2023 lúc 20:21

`#3107.101107`

\(B=3+3^2+3^3+3^4+3^5+3^6+3^7+3^8\)

\(=\left(3+3^2\right)+\left(3^3+3^4\right)+\left(3^5+3^6\right)+\left(3^7+3^8\right)\)

\(=3\left(1+3\right)+3^3\left(1+3\right)+3^5\left(1+3\right)+3^7\left(1+3\right)\)

\(=\left(1+3\right)\left(3+3^3+3^5+3^7\right)\)

\(=4\left(3+3^3+3^5+3^7\right)\)

Vì \(4\left(3^3+3^5+3^7\right)\) $\vdots 4$

`\Rightarrow B \vdots 4`

Vậy, `B \vdots 4.`

talent
29 tháng 10 2023 lúc 20:22

B=3+32+33+34+35+36+37+38=(3+32)+(33+34)+(35+36)+(37+38)=3(1+3)+33(1+3)+35(1+3)+37(1+3)=34+334+354+374=4(3+33+35+37)

Vì 4⋅(3+33+35+37)⋮4

nên �⋮4.

nglan
Xem chi tiết
nglan
17 tháng 12 2021 lúc 21:09

Các bạn giúp mình nhé

Nguyễn Lê Phước Thịnh
18 tháng 12 2021 lúc 0:21

\(S=\left(1+3\right)+...+3^8\left(1+3\right)=4\left(1+...+3^8\right)⋮4\)

Hồng Hoàng
Xem chi tiết
Nguyễn Lê Phước Thịnh
19 tháng 12 2021 lúc 11:51

\(S=\left(1+3+3^2\right)+...+3^7\left(1+3+3^2\right)\)

\(=13\left(1+...+3^7\right)⋮13\)

Minh Quang 6a Đỗ
Xem chi tiết
Kudo Shinichi
23 tháng 12 2021 lúc 18:36

\(S=1+3+3^2+3^3+3^4+3^5+3^6+3^7+3^8+3^9\)

\(S=\left(1+3\right)+\left(3^2+3^3\right)+\left(3^4+3^5\right)+\left(3^6+3^7\right)+\left(3^8+3^9\right)\)

\(S=4+3^2\left(1+3\right)+3^4\left(1+3\right)+3^6\left(1+3\right)+3^8\left(1+3\right)\)

\(S=4+3^2.4+3^4.4+3^6.4+3^8.4\)

\(S=4\left(3^2+3^4+3^6+3^8\right)\)

\(4⋮4\\ \Rightarrow4\left(3^2+3^4+3^6+3^8\right)⋮4\\ \Rightarrow S⋮4\)

Hà Văn Lâm
Xem chi tiết
Bảo Gia
Xem chi tiết
Đoàn Trần Quỳnh Hương
22 tháng 12 2022 lúc 14:12

loading...

Thầy Hùng Olm
22 tháng 12 2022 lúc 14:45

\(S=1.\left(1+3\right)+3^2\left(1+3\right)+3^4\left(1+3\right)+...+3^8\left(1+3\right)\)

\(S=4x\left(1+3^2+...+3^8\right)\)

Vì 4 chia hết cho 4 nên S chia hết cho 4