Cho h/c SABC có đáy là tam giác vuông tại A, SA⊥(ABC)
cm: AC⊥SB
Cho h/c SABC có đáy là tam giác vuông tại, SA⊥(ABC)
cm: AC⊥SB
tam giác vuông tại đâu bạn ơi?
Cho hình chóp SABC , đáy ABC là tam giác vuông cân AB=AC=a, SC⊥(ABC), SC=a, Mặt phẳng qua C vuông góc với SB cắt SA,SB tại E và F. Tính VSCEF.
Cho hình tứ diện SABC có đáy ABC là tam giác vuông tại B, có AB = a, BC =a\(\sqrt{5}\), SA vuông góc với (ABC), SA = a\(\sqrt{6}\)
a) Tính (SB;(ABC))
b) Tính (SA;(SBC))
a: (SB;(ABC))=(SB;BA)=góc SBA
\(\tan SBA=\dfrac{SA}{AB}=\sqrt{6}\)
=>góc SBA=68 độ
b: (SA;(SBC))=(SA;SB)=góc ASB
tan ASB=AB/SA=1/căn 6
=>góc ASB=22 độ
Cho hình chóp SABCD có SA vuông góc với đáy. Tính thể tích khối chóp SABC biết: a. Tam giác ABC đều cạnh a, góc giữa SB và đáy là 30°. b. Tam giác ABC vuông tại A, AB=a, SA=5a; góc giữa SC và đáy là 60°
Cho hình chóp SABCD có SA vuông góc với đáy. Tính thể tích khối chóp SABC biết: a. Tam giác ABC đều cạnh a, góc giữa SB và đáy là 30°. b. Tam giác ABC vuông tại A, AB=a, SA=5a; góc giữa SC và đáy là 60°
Cho hình chóp SABC, đáy tam giác ABC vuông tại B. Gọi H là hình chiếu của A lên SB(SA vuông góc (ABC)) a. Chứng minh: BC vuông góc (SAB) B. Gọi I là hình chiếu của B lên AC Chứng minh BI vuông góc (SAC) c. Kẻ AK vuông góc SC tại K, Chứng minh:AH vuông góc SC
a: BC vuông góc SA
BC vuôg góc AB
=>BC vuông góc (SAB)
b: BI vuông góc SA
BI vuông góc AC
=>BI vuông góc (SAC)
cho hình chóp SABC có đáy tam giác ABC vuông cân tại A, AB=a, SC vuông góc với đáy, SC=a, Mặt phẳng (P) qua C và vuông góc với SB cắt SB tại F và cắt SA tại E. Tính VSCEF
\(BC=AB\sqrt{2}=a\sqrt{2}\)
\(SB=\sqrt{SC^2+BC^2}=a\sqrt{3}\) ; \(SA=\sqrt{SC^2+AC^2}=a\sqrt{2}\)
\(V_{SBAC}=\dfrac{1}{3}SC.\dfrac{1}{2}AB^2=\dfrac{a^3}{6}\)
\(\dfrac{V_{SCEF}}{V_{SABC}}=\dfrac{SF}{SB}.\dfrac{SE}{SA}=\left(\dfrac{SC}{SB}\right)^2\left(\dfrac{SC}{SA}\right)^2=\left(\dfrac{a}{a\sqrt{3}}\right)^2.\left(\dfrac{a}{a\sqrt{2}}\right)^2=\dfrac{1}{6}\)
\(\Rightarrow V_{SCEF}=\dfrac{1}{6}.\dfrac{a^3}{6}=\dfrac{a^3}{36}\)