Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
tanhuquynh
Xem chi tiết
Đào Phúc Việt
Xem chi tiết
Minh Hiếu
8 tháng 10 2021 lúc 20:48

a) \(=4x^2-12x+9\)

b) \(=4x^2+2x+\dfrac{1}{4}\)

c) \(=4x^2-\dfrac{4}{3}x+\dfrac{1}{9}\)

Minh Hiếu
8 tháng 10 2021 lúc 20:51

d) \(=\left(x^2+2y\right)\left(x^4-2x^2y+4y^2\right)\)

e) \(=\left(3-\dfrac{x}{2}\right)\left(9+\dfrac{3x}{2}+\dfrac{x^2}{4}\right)\)

f) \(=\left(125-4x\right)\left(125^2+500x+16x^2\right)\)

Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
28 tháng 9 2023 lúc 20:57

a) \({\left( {2x + 1} \right)^4} = {\left( {2x} \right)^4} + 4.{\left( {2x} \right)^3}{.1^1} + 6.{\left( {2x} \right)^2}{.1^2} + 4.\left( {2x} \right){.1^3} + {1^4} = 16{x^4} + 32{x^3} + 24{x^2} + 8x + 1\)

b) \(\begin{array}{l}{\left( {3y - 4} \right)^4} = {\left[ {3y + \left( { - 4} \right)} \right]^4} = {\left( {3y} \right)^4} + 4.{\left( {3y} \right)^3}.\left( { - 4} \right) + 6.{\left( {3y} \right)^2}.{\left( { - 4} \right)^2} + 4.{\left( {3y} \right)^1}{\left( { - 4} \right)^3} + {\left( { - 4} \right)^4}\\ = 81{y^4} - 432{y^3} + 864{y^2} - 768y + 256\end{array}\)

c) \({\left( {x + \frac{1}{2}} \right)^4} = {x^4} + 4.{x^3}.{\left( {\frac{1}{2}} \right)^1} + 6.{x^2}.{\left( {\frac{1}{2}} \right)^2} + 4.x.{\left( {\frac{1}{2}} \right)^3} + {\left( {\frac{1}{2}} \right)^4} = {x^4} + 2{x^3} + \frac{3}{2}{x^2} + \frac{1}{2}x + \frac{1}{{16}}\)

d) \(\begin{array}{l}{\left( {x - \frac{1}{3}} \right)^4} = {\left[ {x + \left( { - \frac{1}{3}} \right)} \right]^4} = {x^4} + 4.{x^3}.{\left( { - \frac{1}{3}} \right)^1} + 6.{x^2}.{\left( { - \frac{1}{3}} \right)^2} + 4.x.{\left( { - \frac{1}{3}} \right)^3} + {\left( { - \frac{1}{3}} \right)^4}\\ = {x^4} - \frac{4}{3}{x^3} + \frac{2}{3}{x^2} - \frac{4}{27}x + \frac{1}{{81}}\end{array}\)

Đào Phúc Việt
Xem chi tiết
Yen Nhi
2 tháng 10 2021 lúc 21:32

a) \(\left(3x-2\right)^2=\left(3x\right)^2-2.3x.2+2^2=9x^2-12x+4\)

b) \(\left(\dfrac{x}{3}+y^3\right)^2=\left(\dfrac{x}{3}\right)^2+2\dfrac{x}{3}y^3+\left(y^3\right)^2=\dfrac{x^2}{9}+\dfrac{2}{3}xy^3+y^6\)

c) \(9x^2-225=\left(3x\right)^2-\left(15\right)^2=\left(3x-15\right)\left(3x+15\right)\)

Yen Nhi
2 tháng 10 2021 lúc 21:45

d) \(\left(2x-3y\right)^3=\left(2x\right)^3-3\left(2x\right)^23y+3.2x\left(3y\right)^2-\left(3y\right)^3=8x^3-3.4x^2.3y+6x.9y^2-27y^3=8x^3-36x^2y+54xy^2-27y^3\)

e) \(\left(2x^2+\dfrac{3}{2}\right)^3=\left(2x^2\right)^3+3\left(2x^2\right)^2\dfrac{3}{2}+3.2x^2\left(\dfrac{3}{2}\right)^2+\left(\dfrac{3}{2}\right)^3=8x^6+3.4x^4.\dfrac{3}{2}+6x^2.\dfrac{9}{4}+\dfrac{27}{8}=8x^6+18x^4+\dfrac{27}{2}x^2+\dfrac{27}{8}\)

f) \(\left(-2xy^2+\dfrac{1}{2}x^3y\right)^3=\left(-2xy^2\right)+3\left(-2xy^2\right)^2\dfrac{1}{2}x^3y+3\left(-2xy^2\right)\left(\dfrac{1}{2}x^3y\right)^2+\left(\dfrac{1}{2}x^3y\right)^3=-8x^3y^6+3.4x^2y^4.\dfrac{1}{2}x^3y-6xy^2.\dfrac{1}{4}x^6y^2+\dfrac{1}{8}x^9y^3=-8x^3y^6+6x^5y^5-\dfrac{3}{2}x^7y^4+\dfrac{1}{8}x^9y^3\)

༺ミ𝒮σɱєσиє...彡༻
Xem chi tiết
hưng phúc
12 tháng 11 2021 lúc 22:12

\(a.\left(2xy-3\right)^2=4x^2y^2-12xy+9\)

\(b.\left(\dfrac{1}{2}x+\dfrac{1}{3}\right)^2=\dfrac{1}{4}x^2+\dfrac{1}{3}x+\dfrac{1}{9}\)

Nguyễn Thanh Bình
12 tháng 11 2021 lúc 22:12

a) (2xy)2-2(2xy-3)+32

nguyễn thị hương giang
12 tháng 11 2021 lúc 22:13

a)\(\left(2xy-3\right)^2=\left(2xy\right)^2-2\cdot2xy\cdot3+3^2=4x^2y^2-12xy+9\)

b)\(\left(\dfrac{1}{2}x+\dfrac{1}{3}y\right)^2=\left(\dfrac{1}{2}x\right)^2+2\cdot\dfrac{1}{2}x\cdot\dfrac{1}{3}y+\left(\dfrac{1}{3}y\right)^2\)

                          \(=\dfrac{1}{4}x^2+\dfrac{1}{3}xy+\dfrac{1}{9}y^2\)

Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
28 tháng 9 2023 lúc 20:58

a) \({\left( {x + 1} \right)^5} = {x^5} + 5.{x^4}.1 + 10.{x^3}{.1^2} + 10.{x^2}{.1^3} + 5.{x^1}{.1^4} +{1^5} = {x^5} + 5{x^4} + 10{x^3} + 10{x^2} + 5x + 1\)

b) \(\begin{array}{l}{\left( {x - 3y} \right)^5} = {\left[ {x + \left( { - 3y} \right)} \right]^5} = {x^5} + 5{x^4}{\left( { - 3y} \right)^1} + 10{x^3}{\left( { - 3y} \right)^2} + 10{x^2}{\left( { - 3y} \right)^3} + 5{x^1}{\left( { - 3y} \right)^4} + {\left( { - 3y} \right)^5}\\ = {x^5} - 15{x^4}y + 90{x^3}{y^2} - 270{x^2}{y^3} + 405x{y^4} - 243{y^5}\end{array}\)

Chanhh
Xem chi tiết
Chanhh
Xem chi tiết
quang08
31 tháng 8 2021 lúc 14:14

a. (x + y)2 = x2 + 2xy + y2

b. (x - 2y)2 = x2 - 4xy - 4x2

c. (xy2 + 1)(xy2 - 1) = x2y4 - 1

d. (x + y)2(x - y)2 = (x2 + 2xy + y2)(x2 - 2xy + y2) = x4 - (2xy + y2)2 = x4 - (4x2y2 + y4) = x4 - 4x2y2 - y4

Chucs hocj toots

Nguyễn Lê Phước Thịnh
31 tháng 8 2021 lúc 14:19

Câu 2: 

a: \(x^2-4x+4=\left(x-2\right)^2\)

b: \(x^2+10x+25=\left(x+5\right)^2\)

d: \(9\left(x+1\right)^2-6\left(x+1\right)+1=\left(3x+2\right)^2\)

e: \(\left(x-2y\right)^2-8\left(x-2xy\right)+16x^2=\left(x-2y+4x\right)^2=\left(5x-2y\right)^2\)

Nguyễn Lê Phước Thịnh
31 tháng 8 2021 lúc 14:41

Câu 7:

a: Ta có: \(A=x^2-2x+7\)

\(=x^2-2x+1+6\)

\(=\left(x-1\right)^2+6\ge6\forall x\)

Dấu '=' xảy ra khi x=1

b: Ta có: \(B=5x^2-20x\)

\(=5\left(x^2-4x+4-4\right)\)

\(=5\left(x-2\right)^2-20\ge-20\forall x\)

Dấu '=' xảy ra khi x=2

Cao Thị Ánh Hồng
Xem chi tiết