Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Minh Dương
Xem chi tiết
boi đz
29 tháng 6 2023 lúc 17:14

0\(a.S=1-5+5^2-5^3+...+5^{98}-5^{99}\\ 5S=5-5^2+5^3-5^4+.....+5^{99}-5^{100}\\ 5S+S=\left(5-5^2+5^3-5^4+.....+5^{99}-5^{100}\right)+\left(1-5^{ }+5^2-5^3+.....+5^{98}-5^{99}\right)\\ 6S=1-5^{100}\\ S=\dfrac{1-5^{100}}{6}\\ \)

\(b,S6=1-5^{100}\\ 1-S6=5^{100}\) 

=> 5100 chia 6 du 1

 

Nguyễn Minh Dương
29 tháng 6 2023 lúc 16:45

e đang cần gấp, có ai đến giúp e ko?

\(S=1-5+5^2-5^3+...+5^{98}-5^{99}\\ a,S=5^0.\left(1-5\right)+5^2.\left(1-5\right)+...+5^{98}.\left(1-5\right)=-4.\left(5^0+5^2+5^4+...+5^{98}\right)\)

hằng nguyễn
Xem chi tiết
Nguyễn Lê Phước Thịnh
27 tháng 1 2022 lúc 20:10

Bài 2: 

Ta có: (x-3)(x+4)>0

=>x>3 hoặc x<-4

Bài 3:

a: \(5S=5-5^2+...+5^{99}-5^{100}\)

\(\Leftrightarrow6S=1-5^{100}\)

hay \(S=\dfrac{1-5^{100}}{6}\)

Lầy Lam
Xem chi tiết

Đề bài thiếu yêu cầu cụ thể em nhé. em cập nhật lại câu hỏi để được sự hỗ trợ tốt nhất cho tài khoản olm vip

Nguyễn Quốc Duy
8 tháng 11 2023 lúc 10:52

#@₫!%&@^@₫@₫=_++_×%@%@&@@@@=@

Nguyễn Quang Minh
Xem chi tiết
An Bùi
Xem chi tiết
Akai Haruma
11 tháng 9 2021 lúc 8:50

Lời giải:

$C=1+5+5^2+5^4+.....+5^{98}+5^{100}$

$25C=5^2C=5^2+5^3+5^4+5^6+....+5^{100}+5^{102}$

$25C-C=(5^3+5^{102})-(5+1)$

$24C=5^{102}-119$

$C=\frac{5^{102}-119}{24}$

Nguyễn Trần Minh Hoàng
27 tháng 7 2023 lúc 16:11

    

 

Trí Hải ( WITH THE NICKN...
Xem chi tiết
Phong Thần
24 tháng 1 2021 lúc 21:38

a. S = 5 + 52 + 53 + 54 + 55 + 56 +...+ 52012

S = (5 + 5+ 5+ 54) + 55(5 + 5+ 5+ 54)+....+ 52009(5 + 5+ 5+ 54)

Vì (5 + 5+ 5+ 54) = 780 chia hết cho 65

Vậy S chia hết cho 65

b. Gọi số cần tìm là a ta có: (a - 6) chia hết cho 11; (a - 1) chia hết cho 4; (a - 11) chia hết cho 19. 

(a - 6 + 33) chia hết cho 11; (a - 1 + 28) chia hết cho 4; (a - 11 + 38) chia hết cho 19.

(a + 27) chia hết cho 11; (a + 27) chia hết cho 4; (a + 27) chia hết cho 19. 

Do a là số tự nhiên nhỏ nhất nên a + 27 nhỏ nhất

Suy ra: a + 27 = BCNN (4;11; 19).

Từ đó tìm được: a = 809

A = 10n + 18n - 1 = 10n - 1 - 9n + 27n

Ta biết số n và số có tổng các chữ số bằng n có cùng số dư khi chia cho 9 do đó  nên 

       * Vậy A chia hết cho 27

Trần Thùy Dương
Xem chi tiết
Orchid Mantis
13 tháng 2 2022 lúc 20:55

a. S = 5 + 52 + 53 + 54 + 55 + 56 +...+ 52012

S = (5 + 5+ 5+ 54) + 55(5 + 5+ 5+ 54)+....+ 52009(5 + 5+ 5+ 54)

Vì (5 + 5+ 5+ 54) = 780 chia hết cho 65

Vậy S chia hết cho 65

b. Gọi số cần tìm là a ta có: (a - 6) chia hết cho 11; (a - 1) chia hết cho 4; (a - 11) chia hết cho 19. 

(a - 6 + 33) chia hết cho 11; (a - 1 + 28) chia hết cho 4; (a - 11 + 38) chia hết cho 19.

(a + 27) chia hết cho 11; (a + 27) chia hết cho 4; (a + 27) chia hết cho 19. 

Do a là số tự nhiên nhỏ nhất nên a + 27 nhỏ nhất

Suy ra: a + 27 = BCNN (4;11; 19).

Từ đó tìm được: a = 809

A = 10n + 18n - 1 = 10n - 1 - 9n + 27n

lê anh khoa
Xem chi tiết
Akai Haruma
13 tháng 12 2022 lúc 23:35

Lời giải:
a. $(x-3)(y+1)=5=1.5=5.1=(-1)(-5)=(-5)(-1)$
Vì $x-3, y+1$ cũng là số nguyên nên ta có bảng sau:

b.

$A=21+5+(5^2+5^3)+(5^4+5^5)+....+(5^{98}+5^{99})$

$=26+5^2(1+5)+5^4(1+5)+....+5^{98}(1+5)$

$=2+24+(1+5)(5^2+5^4+...+5^{98}$

$=2+24+6(5^2+5^4+....+5^{98})=2+6(4+5^2+5^4+...+5^{98})$

$\Rightarrow A$ chia $6$ dư $2$.

Vũ Minh Ngọc
Xem chi tiết

1, \(\overline{a45b}\) \(⋮\) 2; 3; 5; 9 

⇒ b = 0; a + 4 + 5 + b ⋮ 9 ⇒ a + 9 ⋮ 9 ⇒ a = 9

Vậy \(\overline{a45b}\) = 9450

2, \(\overline{a1b8}\) \(⋮\) 2;3;9 ⇔ a + 1 + b + 8 ⋮ 9 ⇒ a + b ⋮ 9

⇒ b = 0; 1; 2; 3; 4; 5; 6; 7; 8

     a = 9; 8; 7; 6; 5; 4; 3; 2; 1

\(\Rightarrow\) \(\overline{a1b8}\) = 9108; 8118; 7128; 6138; 5148; 4158; 3168; 2178; 1188

 

3, 2025 + \(\overline{a36}\) \(⋮\)  3

  ⇔ 2 + 0 + 2 + 5 + a + 3 + 6 ⋮ 3

                    18 + a ⋮ 3 

                             a ⋮ 3 

 a = 0; 3; 6; 9 

4, 125 + 5100 + \(\overline{31a}\) ⋮ 5

⇔ \(\overline{31a}\) ⋮ 5 

   a ⋮ 5 

   a = 0; 5

   

Nguyễn Đức Trí
8 tháng 9 2023 lúc 14:19

1) \(\overline{x45y}⋮2;3;5;9\)

\(\Rightarrow y=0\left(⋮2;5\right)\)

\(x+4+5+0⋮\left(3;9\right)\)

\(\Rightarrow x=9\)

\(\Rightarrow\overline{x45y}=9450\)

3) \(2025+\overline{x36}⋮3\)

mà \(2025⋮3\)

\(\Rightarrow\overline{x36}⋮3\)

\(\Rightarrow x+3+6⋮3\)

\(\Rightarrow x\in\left\{3;6;9\right\}\)

3) \(2022^{10}+4^{20}+\overline{53x}⋮2\)

\(2022^{10}=2022^8.2022^2=\overline{.....6}x\overline{....4}=\overline{.....4}⋮2\)

\(4^{20}=\overline{.....6}⋮2\)

\(\Rightarrow\overline{53x}⋮2\)

\(\Rightarrow x\in\left\{0;2;4;6;8\right\}\)