1)Cho S = 1 - 5 + 52 - 53 + ... + 598 - 599
a) Tính S
b) CMR : 5100 chia cho 6 dư 1
Cho S = 1 - 5 + 52 - 53 +.... + 598 - 599
a)Tính S b)CMR: 5100 chia cho 6 dư 1
0\(a.S=1-5+5^2-5^3+...+5^{98}-5^{99}\\ 5S=5-5^2+5^3-5^4+.....+5^{99}-5^{100}\\ 5S+S=\left(5-5^2+5^3-5^4+.....+5^{99}-5^{100}\right)+\left(1-5^{ }+5^2-5^3+.....+5^{98}-5^{99}\right)\\ 6S=1-5^{100}\\ S=\dfrac{1-5^{100}}{6}\\ \)
\(b,S6=1-5^{100}\\ 1-S6=5^{100}\)
=> 5100 chia 6 du 1
e đang cần gấp, có ai đến giúp e ko?
\(S=1-5+5^2-5^3+...+5^{98}-5^{99}\\ a,S=5^0.\left(1-5\right)+5^2.\left(1-5\right)+...+5^{98}.\left(1-5\right)=-4.\left(5^0+5^2+5^4+...+5^{98}\right)\)
1:tìm các số nguyên x,y biết:
xy - 3y + y = 20
2:tìm các số nguyên x,thỏa mãn:
(x - 3 ).(x + 4) >0
3:Cho S=1-5+52-53+....+598-599
a)Tính S.
b) Chứng minh rằng :5100 chia cho 6 dư 1
( giúp mk với,mk đang cần gấp ^^)
Bài 2:
Ta có: (x-3)(x+4)>0
=>x>3 hoặc x<-4
Bài 3:
a: \(5S=5-5^2+...+5^{99}-5^{100}\)
\(\Leftrightarrow6S=1-5^{100}\)
hay \(S=\dfrac{1-5^{100}}{6}\)
Ta có: A = 5 + 52 + 53 +....+ 5100
chia hết
Ta có: A = 5 + 52 + 53 +....+ 5100
chia hết
Đề bài thiếu yêu cầu cụ thể em nhé. em cập nhật lại câu hỏi để được sự hỗ trợ tốt nhất cho tài khoản olm vip
Cho S = 1/51 + 1/52 + 1/53 + ... + 1/100 . CMR 7/12 < S < 5/6
thu gọn tổng sau
C=1+5+52+54+...+598+5100
Lời giải:
$C=1+5+5^2+5^4+.....+5^{98}+5^{100}$
$25C=5^2C=5^2+5^3+5^4+5^6+....+5^{100}+5^{102}$
$25C-C=(5^3+5^{102})-(5+1)$
$24C=5^{102}-119$
$C=\frac{5^{102}-119}{24}$
a) Cho S = 5 + 52 + 53 + 54 + 55 + 56 +…+ 52012. Chứng tỏ S chia hết cho 65.
b) Tìm số tự nhiên nhỏ nhất sao cho khi chia cho 11 dư 6, chia cho 4 dư 1 và chia cho 19 dư 11.
c) Chứng tỏ: A = 10n + 18n - 1 chia hết cho 27 (với n là số tự nhiên)
a. S = 5 + 52 + 53 + 54 + 55 + 56 +...+ 52012.
S = (5 + 52 + 53 + 54) + 55(5 + 52 + 53 + 54)+....+ 52009(5 + 52 + 53 + 54)
Vì (5 + 52 + 53 + 54) = 780 chia hết cho 65
Vậy S chia hết cho 65
b. Gọi số cần tìm là a ta có: (a - 6) chia hết cho 11; (a - 1) chia hết cho 4; (a - 11) chia hết cho 19.
(a - 6 + 33) chia hết cho 11; (a - 1 + 28) chia hết cho 4; (a - 11 + 38) chia hết cho 19.
(a + 27) chia hết cho 11; (a + 27) chia hết cho 4; (a + 27) chia hết cho 19.
Do a là số tự nhiên nhỏ nhất nên a + 27 nhỏ nhất
Suy ra: a + 27 = BCNN (4;11; 19).
Từ đó tìm được: a = 809
A = 10n + 18n - 1 = 10n - 1 - 9n + 27n
Ta biết số n và số có tổng các chữ số bằng n có cùng số dư khi chia cho 9 do đó nên
* Vậy A chia hết cho 27
a) Cho S = 5 + 52+ 53 + 54 + 55 + 56 +…+ 52012. Chứng tỏ S chia hết cho 65.
b) Tìm số tự nhiên nhỏ nhất sao cho khi chia cho 11 dư 6, chia cho 4 dư 1và chia cho 19 dư 11.
c) Chứng tỏ: A = 10n+ 18n - 1 chia hết cho 27 (với n là số tự nhiên)
a. S = 5 + 52 + 53 + 54 + 55 + 56 +...+ 52012.
S = (5 + 52 + 53 + 54) + 55(5 + 52 + 53 + 54)+....+ 52009(5 + 52 + 53 + 54)
Vì (5 + 52 + 53 + 54) = 780 chia hết cho 65
Vậy S chia hết cho 65
b. Gọi số cần tìm là a ta có: (a - 6) chia hết cho 11; (a - 1) chia hết cho 4; (a - 11) chia hết cho 19.
(a - 6 + 33) chia hết cho 11; (a - 1 + 28) chia hết cho 4; (a - 11 + 38) chia hết cho 19.
(a + 27) chia hết cho 11; (a + 27) chia hết cho 4; (a + 27) chia hết cho 19.
Do a là số tự nhiên nhỏ nhất nên a + 27 nhỏ nhất
Suy ra: a + 27 = BCNN (4;11; 19).
Từ đó tìm được: a = 809
A = 10n + 18n - 1 = 10n - 1 - 9n + 27n
bài 6:
a) Tìm cặp số x,y nguyên biết: (x - 3).(y+1)=5
b) Cho A = 21 + 5 + 52 + 53 + ... + 599.Tìm số dư của phép chia khi lấy A chia cho 6
Lời giải:
a. $(x-3)(y+1)=5=1.5=5.1=(-1)(-5)=(-5)(-1)$
Vì $x-3, y+1$ cũng là số nguyên nên ta có bảng sau:
b.
$A=21+5+(5^2+5^3)+(5^4+5^5)+....+(5^{98}+5^{99})$
$=26+5^2(1+5)+5^4(1+5)+....+5^{98}(1+5)$
$=2+24+(1+5)(5^2+5^4+...+5^{98}$
$=2+24+6(5^2+5^4+....+5^{98})=2+6(4+5^2+5^4+...+5^{98})$
$\Rightarrow A$ chia $6$ dư $2$.
điền chữ số thích hợp vào dấu * để :
1) *45* chia hết cho 2;3;5;9
2)*1*8 chia hết cho 2;3;9
3)2025+*36 chia hết cho 3
4)125+5100+31* chia hết cho 5
5)202210+420+53* chia hết cho 2
6)37*+*23 chia hết cho 3
1, \(\overline{a45b}\) \(⋮\) 2; 3; 5; 9
⇒ b = 0; a + 4 + 5 + b ⋮ 9 ⇒ a + 9 ⋮ 9 ⇒ a = 9
Vậy \(\overline{a45b}\) = 9450
2, \(\overline{a1b8}\) \(⋮\) 2;3;9 ⇔ a + 1 + b + 8 ⋮ 9 ⇒ a + b ⋮ 9
⇒ b = 0; 1; 2; 3; 4; 5; 6; 7; 8
a = 9; 8; 7; 6; 5; 4; 3; 2; 1
\(\Rightarrow\) \(\overline{a1b8}\) = 9108; 8118; 7128; 6138; 5148; 4158; 3168; 2178; 1188
3, 2025 + \(\overline{a36}\) \(⋮\) 3
⇔ 2 + 0 + 2 + 5 + a + 3 + 6 ⋮ 3
18 + a ⋮ 3
a ⋮ 3
a = 0; 3; 6; 9
4, 125 + 5100 + \(\overline{31a}\) ⋮ 5
⇔ \(\overline{31a}\) ⋮ 5
a ⋮ 5
a = 0; 5
1) \(\overline{x45y}⋮2;3;5;9\)
\(\Rightarrow y=0\left(⋮2;5\right)\)
\(x+4+5+0⋮\left(3;9\right)\)
\(\Rightarrow x=9\)
\(\Rightarrow\overline{x45y}=9450\)
3) \(2025+\overline{x36}⋮3\)
mà \(2025⋮3\)
\(\Rightarrow\overline{x36}⋮3\)
\(\Rightarrow x+3+6⋮3\)
\(\Rightarrow x\in\left\{3;6;9\right\}\)
3) \(2022^{10}+4^{20}+\overline{53x}⋮2\)
\(2022^{10}=2022^8.2022^2=\overline{.....6}x\overline{....4}=\overline{.....4}⋮2\)
\(4^{20}=\overline{.....6}⋮2\)
\(\Rightarrow\overline{53x}⋮2\)
\(\Rightarrow x\in\left\{0;2;4;6;8\right\}\)