Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
DUNGKHANH.PRO HE HE
Xem chi tiết
DUNGKHANH.PRO HE HE
7 tháng 1 2021 lúc 20:42

giup minh voi

 

mikusanpai(՞•ﻌ•՞)
7 tháng 1 2021 lúc 20:56

tham khảo

https://olm.vn/hoi-dap/detail/49371559502.html

cái này khó

Tuquynh Tran
Xem chi tiết
Hồng Nhan
17 tháng 10 2021 lúc 16:54

undefined

Nam Dốt Toán
Xem chi tiết
Akai Haruma
29 tháng 1 2023 lúc 21:51

Lời giải:
a.

$S=3^0+3^2+3^4+...+3^{2002}$

$3^2S=3^2+3^4+3^6+...+3^{2004}$

$3^2S-S=(3^2+3^4+3^6+...+3^{2004})-(3^0+3^2+3^4+...+3^{2002})$

$8S=3^{2004}-3^0=3^{2004}-1$

$S=\frac{3^{2004}-1}{8}$
b.

$S=(3^0+3^2+3^4)+(3^6+3^8+3^{10})+....+(3^{1998}+3^{2000}+3^{2002})$

$=(3^0+3^2+3^4)+3^6(3^0+3^2+3^4)+....+3^{1998}(3^0+3^2+3^4)$

$=(3^0+3^2+3^4)(1+3^6+...+3^{1998})$

$=91(1+3^6+...+3^{1998})=7.13(1+3^6+...+3^{1998})\vdots 7$

Ta có đpcm.

secret1234567
Xem chi tiết
Nguyễn Lê Phước Thịnh
31 tháng 10 2021 lúc 12:00

b: \(S=\left(3^0+3^2+3^4\right)+...+3^{1998}\left(3^0+3^2+3^4\right)\)

\(=91\cdot\left(1+...+3^{1998}\right)⋮7\)

Lâm Khánh Ly
Xem chi tiết
Nguyễn Lê Phước Thịnh
11 tháng 10 2021 lúc 21:59

b: \(S=3^0+3^2+3^4+...+3^{2002}\)

\(=\left(3^0+3^2+3^4\right)+...+3^{1998}\left(3^0+3^2+3^4\right)\)

\(=91\cdot\left(1+...+3^{1998}\right)⋮7\)

Gia Hân
Xem chi tiết

\(S=3+3^2+3^3+3^4+3^5+3^6+3^7+3^8+3^9\\ =\left(3+3^2+3^3\right)+3^3.\left(3+3^2+3^3\right)+3^6.\left(3+3^2+3^3\right)\\ =39+3^3.39+3^6.39\\ =-39.\left(-1-3^3-3^6\right)⋮\left(-39\right)\)

Nguyễn Minh Dương
30 tháng 6 2023 lúc 16:21

S = 3 + 32 + 33 + 34 + 35 + 3+ 37 + 38 + 39

S = ( 3 + 32 + 33 ) +3+ 35 + 36 + 37 + 38 + 3

S = 39 + 34 + 35 + 36 + 37 + 38 + 39

Vì 39 ⋮ -39

<=> S ⋮ -39

nglan
Xem chi tiết
nglan
17 tháng 12 2021 lúc 21:09

Các bạn giúp mình nhé

Nguyễn Lê Phước Thịnh
18 tháng 12 2021 lúc 0:21

\(S=\left(1+3\right)+...+3^8\left(1+3\right)=4\left(1+...+3^8\right)⋮4\)

Hồng Hoàng
Xem chi tiết
Nguyễn Lê Phước Thịnh
19 tháng 12 2021 lúc 11:51

\(S=\left(1+3+3^2\right)+...+3^7\left(1+3+3^2\right)\)

\(=13\left(1+...+3^7\right)⋮13\)

Minh Quang 6a Đỗ
Xem chi tiết
Kudo Shinichi
23 tháng 12 2021 lúc 18:36

\(S=1+3+3^2+3^3+3^4+3^5+3^6+3^7+3^8+3^9\)

\(S=\left(1+3\right)+\left(3^2+3^3\right)+\left(3^4+3^5\right)+\left(3^6+3^7\right)+\left(3^8+3^9\right)\)

\(S=4+3^2\left(1+3\right)+3^4\left(1+3\right)+3^6\left(1+3\right)+3^8\left(1+3\right)\)

\(S=4+3^2.4+3^4.4+3^6.4+3^8.4\)

\(S=4\left(3^2+3^4+3^6+3^8\right)\)

\(4⋮4\\ \Rightarrow4\left(3^2+3^4+3^6+3^8\right)⋮4\\ \Rightarrow S⋮4\)

Bảo Gia
Xem chi tiết
Đoàn Trần Quỳnh Hương
22 tháng 12 2022 lúc 14:12

loading...

Thầy Hùng Olm
22 tháng 12 2022 lúc 14:45

\(S=1.\left(1+3\right)+3^2\left(1+3\right)+3^4\left(1+3\right)+...+3^8\left(1+3\right)\)

\(S=4x\left(1+3^2+...+3^8\right)\)

Vì 4 chia hết cho 4 nên S chia hết cho 4