Tính:
\(\dfrac{x^3+8}{x^2-2x+1}\) X \(\dfrac{x^2+3x+2}{1-x^2}\)
Mn giúp mik vs ạ
Tính:
\(\dfrac{x^3+8}{x^2+2x+1}\)X \(\dfrac{x^2+3x+2}{1-x^2}\)
Mn giúp mik với ạ
\(\dfrac{x^3+8}{x^2+2x+1}.\dfrac{x^2+3x+2}{1-x^2}\left(x\ne\pm1\right)\\ =\dfrac{x^3+2^3}{\left(x+1\right)^2}.\dfrac{\left(x^2+x\right)+\left(2x+2\right)}{1^2-x^2}\\ =\dfrac{\left(x+2\right)\left(x^2-2x+4\right)}{\left(x+1\right)^2}.\dfrac{x\left(x+1\right)+2\left(x+1\right)}{\left(1-x\right)\left(1+x\right)}\\ =\dfrac{\left(x+2\right)\left(x^2-2x+4\right)}{\left(x+1\right)^2}.\dfrac{\left(x+2\right)\left(x+1\right)}{\left(1-x\right)\left(x+1\right)}\\ =\dfrac{\left(x+2\right)^2\left(x^2-2x+4\right)}{\left(1-x\right)\left(x+1\right)^2}\)
tìm nghiệm của đa thức sau
a,\(3x-\dfrac{2}{5}\)
b,\(\left(x-3\right)\).\(\left(2x+8\right)\)
c, \(3.x^2\)-\(x\)-\(4\)
mn giúp mik vs ạ , mik c.on trc ạ
a)\(3x-\dfrac{2}{5}=0=>3x=\dfrac{2}{5}=>x=\dfrac{2}{15}\)
b)\(\left(x-3\right)\left(2x+8\right)=0=>\left[{}\begin{matrix}x-3=0\\2x=-8\end{matrix}\right.=>\left[{}\begin{matrix}x=3\\x=-4\end{matrix}\right.\)
c)\(3x^2-x-4=0=>3x^2+3x-4x-4=0=>\left(3x-4\right)\left(x+1\right)=0\)
\(=>\left[{}\begin{matrix}3x=4\\x+1=0\end{matrix}\right.=>\left[{}\begin{matrix}x=\dfrac{3}{4}\\x=-1\end{matrix}\right.\)
Rút gọn
a)\(\dfrac{x}{x+1}+\dfrac{1}{x-1}-\dfrac{2x}{1-x^2}\)
b)\(\dfrac{x}{x-2}-\dfrac{4x}{x^2-4}-\dfrac{2}{x+2}\)
c)\(\dfrac{2x^2-3x-9}{x^2-9}-\dfrac{x}{x+3}-\dfrac{x+3}{3-x}\)
d)\(\dfrac{x+3}{x-2}+\dfrac{x+2}{1-x}-\dfrac{4x-x^2}{x^2-3x+2}\)
giúp mik vs
cảm ơn <3
a: \(=\dfrac{x^2-x+x+1+2x}{\left(x-1\right)\left(x+1\right)}=\dfrac{\left(x+1\right)^2}{\left(x-1\right)\left(x+1\right)}=\dfrac{x+1}{x-1}\)
b: \(=\dfrac{x^2+2x-4x-2x+4}{\left(x-2\right)\left(x+2\right)}=\dfrac{x^2-4x+4}{\left(x-2\right)\left(x+2\right)}=\dfrac{x-2}{x+2}\)
c: \(=\dfrac{2x^2-3x-9-x^2+3x+x^2+6x+9}{\left(x-3\right)\left(x+3\right)}\)
\(=\dfrac{2x^2+6x}{\left(x-3\right)\left(x+3\right)}=\dfrac{2x}{x-3}\)
giúp mik 3 câu này với
a) \(\dfrac{10}{x+2}\);\(\dfrac{5}{2x-4}\);\(\dfrac{1}{6-3x}\)
b) \(\dfrac{1}{x+2}\);\(\dfrac{8}{2x-x^2}\)
c) \(\dfrac{4x^2-3x+5}{x^3-1}\);\(\dfrac{1-2x}{x^2+x+1}\);-2
Xin cảm ơn vì các bạn đã giúp mình
Lời giải:
a.
\(\frac{10}{x+2}=\frac{60}{6(x+2)}=\frac{60(x-2)}{6(x+2)(x-2)}=\frac{60(x-2)}{6(x^2-4)}\)
\(\frac{5}{2x-4}=\frac{15(x+2)}{6(x-2)(x+2)}=\frac{15(x+2)}{6(x^2-4)}\)
\(\frac{1}{6-3x}=\frac{x+2}{3(2-x)}=\frac{2(x+2)^2}{6(2-x)(2+x)}=\frac{-2(x+2)^2}{6(x^2-4)}\)
b.
\(\frac{1}{x+2}=\frac{x(2-x)}{x(x+2)(2-x)}=\frac{x(2-x)}{x(4-x^2)}\)
\(\frac{8}{2x-x^2}=\frac{8(x+2)}{(x+2)x(2-x)}=\frac{8(x+2)}{x(4-x^2)}\)
c.
\(\frac{4x^2-3x+5}{x^3-1}\)
\(\frac{1-2x}{x^2+x+1}=\frac{(1-2x)(x-1)}{(x-1)(x^2+x+1)}=\frac{-2x^2+3x-1}{x^3-1}\)
\(-2=\frac{-2(x^3-1)}{x^3-1}\)
\(8(x+\dfrac{1}{x} )^{2} \)\(+4(x^{2}+\dfrac{1}{x^{2} } )^{2}\)\(-4 (x^{2}+\dfrac{1}{x^{2}} )(x+\dfrac{1}{x})^{2} \)\(=(x+4)^{2}\)
giúp mik vs ạ cho mik cách giải pt này vs ạ
=>8(x+1/x)^2+4[(x+1/x)^2-2]^2-4[(x+1/x)^2-2](x+1/x)^2=(x+4)^2
Đặt x+1/x=a(a>=2)
=>8a^2+4[a^2-2]^2-4[a^2-2]*a^2=(x+4)^2
=>8a^2+4a^4-16a^2+16-4a^4+8a^2=(x+4)^2
=>(x+4)^2=16
=>x+4=4 hoặc x+4=-4
=>x=-8;x=0
Điều kiện: \(x\ne0\)
\(\Leftrightarrow8\left(x+\dfrac{1}{x}\right)^2+4\left(x^2+\dfrac{1}{x^2}\right)\left[\left(x^2+\dfrac{1}{x^2}\right)-\left(x+\dfrac{1}{x}\right)^2\right]=\left(x+4\right)^2\)
\(\Leftrightarrow8\left(x+\dfrac{1}{x}\right)^2-8\left(x^2+\dfrac{1}{x^2}\right)=\left(x+4\right)^2\\ \Leftrightarrow\left(x+4\right)^2=16\\ \Rightarrow\left\{{}\begin{matrix}x=0\\x=-8\end{matrix}\right.\)
Vì \(x\ne0\) nên \(S=\left\{-8\right\}\)
Cho D=\(\dfrac{2x+4}{3x-1}\) (x ≠ \(\dfrac{1}{3}\)).Tìm x nguyên để D có giá trị nguyên.
mn giúp mik vs ạ!!!
\(D=\dfrac{2x+4}{3x-1}\\ =>3D=\dfrac{6x+12}{3x-1}=\dfrac{2\left(3x-1\right)+14}{3x-1}=2+\dfrac{14}{3x-1}\)
Để 3D nguyên thì : \(\dfrac{14}{3x-1}\in Z\)
\(=>14⋮\left(3x-1\right)\\ =>3x-1\inƯ\left(14\right)=\left\{\pm1;\pm2;\pm7;\pm14\right\}\)
\(=>3x\in\left\{2;0;3;-1;8;-6;15;-13\right\}\\ =>x\in\left\{\dfrac{2}{3};0;1;-\dfrac{1}{3};\dfrac{8}{3};-2;5;-\dfrac{13}{3}\right\}\)
Mà x nguyên \(=>x\in\left\{0;1;-2;5\right\}\)
Do những giá trị trên chỉ là 3D nguyên nên chưa chắc D đã nguyên
Vậy thử lại thay từng giá trị x vào bt D
Kết luận : \(x\in\left\{0;1;-2;5\right\}\)
\(\dfrac{2}{36a^2b^2-1};\dfrac{1}{6ab+1^2};\dfrac{1}{6ab-1^2}\)
\(\dfrac{x}{x^3-27};\dfrac{2x}{x^2-6x+9};\dfrac{1}{x^2+3x+9x}\)
\(\dfrac{x^2-x}{x^2-1};\dfrac{3x}{x^3+2x^2+x};2x\)
giúp với ạ
\(\dfrac{2}{36a^2b^2-1}=\dfrac{2}{\left(6ab-1\right)\left(6ab+1\right)}\\ \dfrac{1}{6ab+1}=\dfrac{6ab-1}{\left(6ab-1\right)\left(6ab+1\right)};\dfrac{1}{6ab-1}=\dfrac{6ab+1}{\left(6ab-1\right)\left(6ab+1\right)}\)
\(\dfrac{x}{x^3-27}=\dfrac{x\left(x-3\right)}{\left(x-3\right)^2\left(x^2+3x+9\right)}\\ \dfrac{2x}{x^2-6x+9}=\dfrac{2x\left(x^2+3x+9\right)}{\left(x-3\right)^2\left(x^2+3x+9\right)}\\ \dfrac{1}{x^2+3x+9}=\dfrac{\left(x-3\right)^2}{\left(x-3\right)^2\left(x^2+3x+9\right)}\)
\(\dfrac{x^2-x}{x^2-1}=\dfrac{x\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}=\dfrac{x}{x+1}=\dfrac{x\left(x+1\right)}{\left(x+1\right)^2}\\ \dfrac{3x}{x^3+2x^2+x}=\dfrac{3x}{x\left(x^2+2x+1\right)}=\dfrac{3}{\left(x+1\right)^2}\\ 2x=\dfrac{2x\left(x+1\right)^2}{\left(x+1\right)^2}\)
1) Giải các phương trình sau :
a) \(\dfrac{2x+1}{3}-\)\(\dfrac{6x-1}{4}\) = \(\dfrac{2x+1}{12}\)
b) (4x+7)(x-3) - x\(^2\) = 3x (x+2)
mn giúp em với ạ
a: \(\Leftrightarrow4\left(2x+1\right)-3\left(6x-1\right)=2x+1\)
=>8x+4-18x+3=2x+1
=>-10x+7=2x+1
=>-12x=-6
hay x=1/2
b: \(\Leftrightarrow4x^2-12x+7x-21-x^2=3x^2+6x\)
=>5x-21=6x
=>-x=21
hay x=-21
GIẢI PT :
1) \(\dfrac{x}{x-5}=\dfrac{x-2}{x-6}\) (GHI RÕ ĐK)
2) \(\dfrac{2x}{8-x}-\dfrac{2-2x}{4-x}=1\) (GHI RÕ ĐK)
3) \(\dfrac{2x}{x+4}-\dfrac{4x}{x^2-16}=0\) (GHI RÕ ĐK)
MN GIÚP E BÀI NÀY VỚI Ạ. E ĐANG CẦN GẤP Ạ.
1: \(\Leftrightarrow x^2-6x=x^2-7x+10\)
hay x=10