Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Tony Nguyễn
Xem chi tiết
Mr Lazy
5 tháng 10 2015 lúc 19:14

không cần điều kiện cũng được, giải ra x = 1 hoặc x = 7, lấy ra thay lại xem pt có xác định và thỏa không là được

Tony Nguyễn
5 tháng 10 2015 lúc 18:38

RA BẬC CAO SAO GIẢI

 

ITACHY
Xem chi tiết
Trần Phúc Khang
20 tháng 7 2019 lúc 13:22

ĐK \(x\ge\frac{4}{7}\)

PT <=> \(x^2+6x-1+2=2\sqrt{\left(7x-4\right)\left(x^2-x+3\right)}\)

<=> \(\left(\sqrt{x^2-x+3}-\sqrt{7x-4}\right)^2+2=0\) vô nghiệm do VT>0 với mọi \(x\ge\frac{4}{7}\)

Vậy PT vô nghiệm

Tony Nguyễn
Xem chi tiết
Fire Sky
Xem chi tiết
vũ tiền châu
Xem chi tiết
vương đức
Xem chi tiết
Nguyễn Thị Bình Yên
Xem chi tiết
Trần Nguyễn Khánh Linh
Xem chi tiết
Nguyễn Thiều Công Thành
14 tháng 8 2017 lúc 21:18

b2

\(\left(\sqrt{2x^2-6x+2}-2x+3\right)\left(-\sqrt{2x^2-6x+2}-3x+4\right)=0\)

Lầy Văn Lội
14 tháng 8 2017 lúc 22:41

Dự đoán \(\frac{1}{2}\)là nghiệm của phương trình ( casio :v)

Áp dụng AM-GM:\(2VF=3.\sqrt[3]{4.8x\left(4x^2+3\right)}\le4+8x+4x^2+3=4x^2+8x+7\)

và \(4x^2+8x+7\le8x^4+2x^2+6x+8\)vì nó tương đương \(\left(2x-1\right)^2\left(2x^2+2x+1\right)\ge0\)

Do đó \(VT\ge VF\)

Dấu = xảy ra khi\(x=\frac{1}{2}\)

tth_new
10 tháng 12 2019 lúc 9:25

Chi tiết một chút!

Bài 2:

ĐKXĐ:....

Đặt \(\sqrt{2x^2-6x+2}=t\ge0\Rightarrow2x^2-6x+2=t^2\)

Viết lại pt dưới dạng:

\(t^2+\left(x-1\right)t-6x^2+17x-12=0\)

\(\Leftrightarrow\left(t-2x+3\right)\left(t+3x-4\right)=0\)

Khách vãng lai đã xóa
Fire Sky
Xem chi tiết