Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lizy
Xem chi tiết
Nguyễn Lê Phước Thịnh
13 tháng 11 2023 lúc 20:50

ĐKXĐ: m<>3

Để hàm số nghịch biến trên R thì \(\dfrac{1}{m-3}< 0\)

=>m-3<0

=>m<3

Lizy
Xem chi tiết
Nguyễn Lê Phước Thịnh
13 tháng 11 2023 lúc 20:57

Để đây là hàm số bậc nhất thì \(\dfrac{m^2}{3-4m}< >0\)

=>\(m\notin\left\{0;\dfrac{3}{4}\right\}\)

Để hàm số \(y=\dfrac{m^2}{3-4m}x+3m-2\) nghịch biến trên R thì

\(\dfrac{m^2}{3-4m}< 0\)

=>3-4m<0

=>-4m<-3

=>\(m>\dfrac{3}{4}\)

myyyy
Xem chi tiết
Nguyễn Lê Phước Thịnh
11 tháng 11 2023 lúc 19:19

a: \(y=-\dfrac{1}{3}x^3-mx^2+4x+2021m\)

=>\(y'=-\dfrac{1}{3}\cdot3x^2-m\cdot2x+4\)

=>\(y'=-x^2-2m\cdot x+4\)

Để hàm số nghịch biến trên R thì \(y'< =0\forall x\)

=>\(\left\{{}\begin{matrix}\text{Δ}< =0\\a< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(-2m\right)^2-4\cdot\left(-1\right)\cdot4< =0\\-1< 0\end{matrix}\right.\)

=>\(4m^2+16< =0\)

mà \(4m^2+16>=16>0\forall m\)

nên \(m\in\varnothing\)

b: \(y=-\dfrac{1}{3}\cdot x^3-\dfrac{1}{2}\cdot m\cdot x^2+x+20\)

=>\(y'=-\dfrac{1}{3}\cdot3x^2-\dfrac{1}{2}\cdot m\cdot2x+1\)

=>\(y'=-x^2-m\cdot x+1\)

Để hàm số nghịch biến trên R thì \(y'< =0\forall x\)

=>\(\left\{{}\begin{matrix}\text{Δ}< =0\\a< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(-m\right)^2-4\cdot\left(-1\right)\cdot1< =0\\-1< 0\end{matrix}\right.\)

=>\(m^2+4< =0\)

mà \(m^2+4>=4>0\forall m\)

nên \(m\in\varnothing\)

myyyy
Xem chi tiết
Nguyễn Lê Phước Thịnh
11 tháng 11 2023 lúc 19:34

a: \(y=-x^3-\left(m+1\right)x^2+3\left(m+1\right)x\)

=>\(y'=-3x^2-\left(m+1\right)\cdot2x+3\left(m+1\right)\)

=>\(y'=-3x^2+x\cdot\left(-2m-2\right)+\left(3m+3\right)\)

Để hàm số nghịch biến trên R thì \(y'< =0\forall x\)

=>\(\left\{{}\begin{matrix}\text{Δ}< =0\\a< 0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\left(-2m-2\right)^2-4\cdot\left(-3\right)\left(3m+3\right)< =0\\-3< 0\end{matrix}\right.\)

=>\(4m^2+8m+4+12\left(3m+3\right)< =0\)

=>\(4m^2+8m+4+36m+36< =0\)

=>\(4m^2+44m+40< =0\)

=>\(m^2+11m+10< =0\)

=>\(\left(m+1\right)\left(m+10\right)< =0\)

TH1: \(\left\{{}\begin{matrix}m+1>=0\\m+10< =0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m>=-1\\m< =-10\end{matrix}\right.\)

=>\(m\in\varnothing\)

TH2: \(\left\{{}\begin{matrix}m+1< =0\\m+10>=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m< =-1\\m>=-10\end{matrix}\right.\)

=>-10<=m<=-1

b: \(y=-\dfrac{1}{3}x^3+mx^2-\left(2m+3\right)x\)

=>\(y'=-\dfrac{1}{3}\cdot3x^2+m\cdot2x-\left(2m+3\right)\)

=>\(y'=-x^2+2m\cdot x-\left(2m+3\right)\)

Để hàm số nghịch biến trên R thì \(y'< =0\forall x\)

=>\(\left\{{}\begin{matrix}\text{Δ}< =0\\a< 0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}-1< 0\\\left(2m\right)^2-4\cdot\left(-1\right)\cdot\left(-2m-3\right)< =0\end{matrix}\right.\)

=>\(4m^2+4\left(-2m-3\right)< =0\)

=>\(m^2-2m-3< =0\)

=>(m-3)(m+1)<=0

TH1: \(\left\{{}\begin{matrix}m-3>=0\\m+1< =0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m>=3\\m< =-1\end{matrix}\right.\)

=>\(m\in\varnothing\)

TH2: \(\left\{{}\begin{matrix}m-3< =0\\m+1>=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m< =3\\m>=-1\end{matrix}\right.\)

=>-1<=m<=3

Hà Mi
Xem chi tiết
Nguyễn Việt Lâm
17 tháng 7 2021 lúc 20:43

\(y'=-x^2+2\left(m-2\right)x-m^2+3m\)

\(\Delta'=\left(m-2\right)^2-m^2+3m=4-m\)

TH1: \(\Delta'\le0\Rightarrow m\ge4\Rightarrow y'\le0\) ; \(\forall x\) hàm nghịch biến trên R (thỏa mãn)

TH2: \(m< 4\) , bài toán thỏa mãn khi:

\(x_1< x_2\le1\Leftrightarrow\left\{{}\begin{matrix}\left(x_1-1\right)\left(x_2-1\right)\ge0\\\dfrac{x_1+x_2}{2}< 1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_1x_2-\left(x_1+x_2\right)+1\ge0\\x_1+x_2< 2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m^2-3m-\left(2m-4\right)+1\ge0\\2m-4< 2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m^2-5m+5\ge0\\m< 3\end{matrix}\right.\) \(\Rightarrow m\le\dfrac{5-\sqrt{5}}{2}\)

Vậy \(\left[{}\begin{matrix}m\ge4\\m\le\dfrac{5-\sqrt{5}}{2}\end{matrix}\right.\)

myyyy
Xem chi tiết
Nguyễn Lê Phước Thịnh
12 tháng 11 2023 lúc 9:00

a: TXĐ: D=R\{3}

\(y=\dfrac{2m-x}{x-3}\)

=>\(y'=\dfrac{\left(2m-x\right)'\left(x-3\right)-\left(2m-x\right)\left(x-3\right)'}{\left(x-3\right)^2}\)

\(=\dfrac{-\left(x-3\right)-2m+x}{\left(x-3\right)^2}\)

\(=\dfrac{3-2m}{\left(x-3\right)^2}\)

Để hàm số đồng biến trên từng khoảng xác định thì y'>0 với mọi x thỏa mãn ĐKXĐ

=>\(\dfrac{3-2m}{\left(x-3\right)^2}>0\)

=>3-2m>0

=>2m<3

=>\(m< \dfrac{3}{2}\)

b: TXĐ: D=R\{-m}

\(y=\dfrac{x+3}{x+m}\)

=>\(y'=\dfrac{\left(x+3\right)'\left(x+m\right)-\left(x+3\right)\left(x+m\right)'}{\left(x+m\right)^2}\)

\(=\dfrac{x+m-x-3}{\left(x+m\right)^2}=\dfrac{m-3}{\left(x+m\right)^2}\)

Để hàm số nghịch biến trên từng khoảng xác định thì \(y'< 0\forall x\in TXĐ\)

=>\(\dfrac{m-3}{\left(x+m\right)^2}< 0\)

=>m-3<0

=>m<3

Nguyễn Thị Phương Thảo
Xem chi tiết
Đinh Thị Minh Thư
29 tháng 9 2016 lúc 10:43

Theo mình:

để hàm số đồng biến, đk cần là y'=0.

a>0 và \(\Delta'< 0\)

nghịch biến thì a<0 

vì denta<0 thì hầm số cùng dấu với a

mình giải được câu a với b

câu c có hai cực trị thì a\(\ne\)0, y'=0, denta>0 (để hàm số có hai nghiệm pb) 

câu d dùng viet

câu e mình chưa chắc lắm ^^

tthơ
Xem chi tiết
Nguyễn Việt Lâm
2 tháng 1 2022 lúc 14:57

Đây là hàm bậc 3 có \(a=\dfrac{1}{3}>0\) nên không bao giờ nghịch biến trên R

\(\Rightarrow\) Không tồn tại m thỏa mãn

Đạm Đoàn
Xem chi tiết
Nguyễn Lê Phước Thịnh
8 tháng 9 2021 lúc 23:28

a: Để hàm số nghịch biến thì 1-2m<0

hay \(m>\dfrac{1}{2}\)

b: Để hàm số nghịch biến thì m-1<0

hay m<1

c: Để hàm số nghịch biến thì \(\dfrac{m-5}{m}>0\)

hay \(\left[{}\begin{matrix}m>5\\m< 0\end{matrix}\right.\)