Đây là hàm bậc 3 có \(a=\dfrac{1}{3}>0\) nên không bao giờ nghịch biến trên R
\(\Rightarrow\) Không tồn tại m thỏa mãn
Đây là hàm bậc 3 có \(a=\dfrac{1}{3}>0\) nên không bao giờ nghịch biến trên R
\(\Rightarrow\) Không tồn tại m thỏa mãn
Cho y=\(\frac{1}{3}mx^3-\left(m-1\right)x^2-3\left(m-2\right)x+\frac{1}{3}\)
a. Tìm m để hàm số đồng biến trên R
b. Tìm m để hàm số nghịch biến trên R
c. Tìm m để hàm số có 2 cực trị
d. Tìm m để hàm số có 2 cực trị x1,x2 sao cho x1+3x2=1
e. Tìm m để hàm số nghịch biến trên đoạn có độ dài bằng 1 (khi m>0)
tìm tập tất cả các giá trị của tham số m để hàm số y= -1/3x^3-(m-2)x^2+(m-2)x+m luôn nghịch biến trên tập xác định
Cho hàm số \(y=-x^3+3x^2+3mx-1\left(1\right)\), với m là tham số thực. Tìm m để hàm số (1) nghịch biến trên khoảng (\(0;+\infty\))
Số các giá trị nguyên trong đoạn [-100;100] để hàm số y = \(mx^3+mx^2+\left(m+1\right)x-3\) nghịch biến trên R
Tìm các giá trị nguyên của m để hàm số y= 1/3x³ - mx² + (2m+3)x +1 .đồng biến trên R
Tìm m để y=-1/3x^3+(m-1)x^2+m+3 nghịch biến trên R
Tìm các giá trị của m để hàm số y=1/3(m-1) x^3-(m-1)x^2 + x + 2 đồng biến trên R
Cho hàm số \(y=-x^3+\left(m+1\right)x^2+m\left(m-3\right)x-\frac{1}{3}\left(1\right)\), với m là tham số thực. Tìm m để hàm số (1) nghịch biến trên khoảng \(\left(1;+\infty\right)\)
Hỏi có bao nhiêu số nguyên m để hàm số \(y=\left(m^2-1\right)x^3+\left(m-1\right)x^2-x+4\) nghịch biến trên khoảng (-∞;+∞)