Bài 1: Sự đồng biến và nghịch biến của hàm số

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Phạm Nguyễn Thanh Duy

Cho hàm số \(y=-x^3+\left(m+1\right)x^2+m\left(m-3\right)x-\frac{1}{3}\left(1\right)\), với m là tham số thực. Tìm m để hàm số (1) nghịch biến trên khoảng \(\left(1;+\infty\right)\)

Võ Bình Minh
19 tháng 4 2016 lúc 21:14

Hàm số nghịch biến trên khoảng \(\left(1;+\infty\right)\)\(\Rightarrow y'\le0,x\in\left(1;+\infty\right)\) (*)

Trường hợp 1 : Nếu \(\Delta'\le0\Leftrightarrow4m^2-7m+1\le0\Leftrightarrow\frac{7-\sqrt{33}}{8}\le m\le\frac{7+\sqrt{33}}{8}\) thì theo định lí về dấu tam thức bậc 2 ta có \(y'\le0,x\in R\Rightarrow\) (*) luôn đúng.

Trường hợp 2 : Nếu \(\Delta'>0\Leftrightarrow4m^2-7m+1>0\Leftrightarrow m\le\frac{7-\sqrt{33}}{8}\)  hoặc \(m\ge\frac{7+\sqrt{33}}{8}\)thì (*) đúng

\(\Leftrightarrow\) phương trình y'=0 có 2 nghiệm phân biệt \(x_1,x_2\) mà \(x_1<\)\(x_2\) và thỏa mãn x1 < x2 <= 1

\(\Leftrightarrow\frac{1-\sqrt{5}}{2}\le m\le\frac{7-\sqrt{33}}{8}\) hoặc \(\frac{7-\sqrt{33}}{8}\le m\le\frac{1-\sqrt{5}}{2}\)

Kết hợp trường hợp 1 và trường hợp 2 ta có 

\(\Leftrightarrow\frac{1-\sqrt{5}}{2}\le m\le\frac{7-\sqrt{33}}{8}\) hoặc \(\frac{7-\sqrt{33}}{8}\le m\le\frac{1-\sqrt{5}}{2}\) thì hàm số nghịch biến trên khoảng \(\left(1;+\infty\right)\)

 

Các câu hỏi tương tự
Nguyễn Hương Giang
Xem chi tiết
Trần Đào Tuấn
Xem chi tiết
Nguyễn Hồ Kim Trang
Xem chi tiết
Tâm Cao
Xem chi tiết
Trần Thụy Nhật Trúc
Xem chi tiết
Đoàn Thị Hồng Vân
Xem chi tiết
Nguyễn Thùy Chi
Xem chi tiết
Đỗ Đức Huy
Xem chi tiết
Nguyễn Thị Phương Thảo
Xem chi tiết