Bài 1: Sự đồng biến và nghịch biến của hàm số

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Đoàn Thị Hồng Vân

Cho hàm số \(y=x^4-2\left(m-1\right)x^2+m-2\left(1\right)\), với m là tham số thực. Tìm m để hàm số (1) đồng biến trên khoảng \(\left(1;3\right)\)

 
Nguyễn Minh Hằng
19 tháng 4 2016 lúc 13:58

Ta có : \(y'=4x^3-4\left(m-1\right)x\)

           \(y'=0\Leftrightarrow4x^3-4\left(m-1\right)x=0\Leftrightarrow x\left[x^2-\left(m-1\right)\right]=0\)

Trường hợp 1 : nếu \(m-1\le0\Leftrightarrow m\le1\), hàm số đồng biến trên khoảng \(\left(0;+\infty\right)\), vậy \(m\le1\) thỏa mãn yêu cầu bài toán

Trường hợp 2 : nếu \(m-1>0\Leftrightarrow m>1\)hàm số đồng biến trên khoảng \(\left(-\sqrt{m-1};0\right)\) và \(\left(\sqrt{m-1};+\infty\right)\)

Để hàm số đồng biến trên khoảng (1;3) thì \(\left(\sqrt{m-1}\le1\Leftrightarrow m\le2\right)\)

Vậy hàm số đồng biến trên khoảng (1;3) \(\Leftrightarrow m\in\left(-\infty;2\right)\)

  

 


Các câu hỏi tương tự
Nguyễn Thùy Chi
Xem chi tiết
Phạm Nguyễn Thanh Duy
Xem chi tiết
Nguyễn Hương Giang
Xem chi tiết
Trần Thụy Nhật Trúc
Xem chi tiết
Đỗ Đức Huy
Xem chi tiết
Nguyễn Hồ Kim Trang
Xem chi tiết
Tâm Cao
Xem chi tiết
Trần Mai Linh
Xem chi tiết
Tâm Cao
Xem chi tiết