Ta có : \(y'=\frac{m^2-4}{\left(x-m\right)^2},x\ne m\) nên hàm số (1) đồng biến trên khoảng (-\(\infty\);3] khi và chỉ khi \(\begin{cases}y'>0,x\in\left(-\infty;3\right)\\m\notin\left(-\infty;3\right)\end{cases}\)\(\begin{cases}m^2-4>0\\m>3\end{cases}\)
\(\Leftrightarrow\)m<-2 hoặc m>2 và m>3 <=> m>3
Vậy m>3 thì hàm số đồng biến trên khoảng (-\(\infty\);3]