tìm m để hàm số \(y=\frac{mx+4}{x+m}\) nghịch biến trên khoảng \(\left(-\infty;1\right)\)
tìm m để hàm số \(y=\frac{mx+4}{x+m}\) nghịch biến trên khoảng \(\left(-\infty;1\right)\)
tìm m để hàm số \(y=\frac{mx+4}{x+m}\) nghịch biến trên khoảng \(\left(-\infty;1\right)\)
tìm m để hàm số \(y=\frac{mx+4}{x+m}\) nghịch biến trên khoảng \(\left(-\infty;1\right)\)
tìm m để hàm số \(y=\frac{mx+4}{x+m}\) nghịch biến trên khoảng \(\left(-\infty;1\right)\)
Cho hàm số \(y=-x^3+\left(m+1\right)x^2+m\left(m-3\right)x-\frac{1}{3}\left(1\right)\), với m là tham số thực. Tìm m để hàm số (1) nghịch biến trên khoảng \(\left(1;+\infty\right)\)
Cho hàm số \(y=\frac{-mx+4}{x-m}\left(1\right)\), với m là tham số thực. Tìm m để hàm số (1) đồng biến trên khoảng \(\left(-\infty;3\right)\)
Xác định m để hàm số sau :
a) \(y=\dfrac{mx-4}{x-m}\) đồng biến trên từng khoảng xác định
b) \(y=\dfrac{-mx-5m+4}{x+m}\) nghịch biến trên từng khoảng xác định
c) \(y=-x^3+mx^2-3x+4\) nghịch biến trên \(\left(-\infty;+\infty\right)\)
d) \(y=x^3-2mx^2+12x-7\) đồng biến trên \(\mathbb{R}\)
Cho hàm số \(y=-x^3+3x^2+3mx-1\left(1\right)\), với m là tham số thực. Tìm m để hàm số (1) nghịch biến trên khoảng (\(0;+\infty\))