\(\sqrt{x^2-9}-3\sqrt{x-3=0}\)
1) x-\(7\sqrt{x-3}\) -9=0 2) \(\sqrt{x+3}\) =5-\(\sqrt{x-2}\) 3) \(\sqrt{x-4\sqrt{x+4}}\) =3 4) \(\sqrt{8-\dfrac{2}{3}x}-5\sqrt{2}\) =0 5) \(\sqrt{x^2-4x+4}\) =2-x
a : \(\dfrac{\sqrt{x}}{\sqrt{x}+3}+\dfrac{2\sqrt{x}}{\sqrt{x}-3}-\dfrac{3x+9}{x-9}\)với x ≥ 0 x ≠ 9
b : \(\dfrac{3}{\sqrt{x}-1}-\dfrac{\sqrt{x}+5}{x-1}\)với x ≥ 0 x ≠ 1
c : \(\left(\dfrac{15-\sqrt{x}}{x-25}+\dfrac{2}{\sqrt{x}+5}\right):\dfrac{\sqrt{x}+1}{\sqrt{x}-5}\)với x ≥ 0 x ≠ 0
d : \(\dfrac{3\sqrt{x}+1}{x+2\sqrt{x}-3}-\dfrac{2}{\sqrt{x}+3}\)với x ≥ 0 x ≠ 1
a) \(\dfrac{\sqrt{x}}{\sqrt{x}+3}+\dfrac{2\sqrt{x}}{\sqrt{x}-3}-\dfrac{3x+9}{x-9}\left(x\ge0;x\ne0\right)\)
\(=\dfrac{\sqrt{x}.\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right).\left(\sqrt{x-3}\right)}+\dfrac{2\sqrt{x}.\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-3\right).\left(\sqrt{x}+3\right)}-\dfrac{3x+9}{\left(\sqrt{x}-3\right).\left(\sqrt{x+3}\right)}\)
\(=\dfrac{x-3\sqrt{x}+2x+6\sqrt{x}-3x-9}{\left(\sqrt{x}+3\right).\left(\sqrt{x-3}\right)}\)
\(=\dfrac{3\sqrt{x}-9}{\left(\sqrt{x}+3\right).\left(\sqrt{x}-3\right)}\)
\(=\dfrac{3.\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right).\left(\sqrt{x}-3\right)}\)
\(=\dfrac{3}{\sqrt{x}+3}\)
b) \(\dfrac{3}{\sqrt{x}-1}-\dfrac{\sqrt{x}+5}{x-1}\left(x\ge0;x\ne1\right)\)
\(=\dfrac{3.\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right).\left(\sqrt{x}+1\right)}-\dfrac{\sqrt{x}+5}{\left(\sqrt{x}-1\right).\left(\sqrt{x}+1\right)}\)
\(=\dfrac{3\sqrt{x}+3-\sqrt{x}-5}{\left(\sqrt{x}-1\right).\left(\sqrt{x}+1\right)}\)
\(=\dfrac{2\sqrt{x}-2}{\left(\sqrt{x}-1\right).\left(\sqrt{x}+1\right)}\)
\(=\dfrac{2.\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right).\left(\sqrt{x}+1\right)}\)
\(=\dfrac{2}{\sqrt{x}+1}\)
c) \(\left(\dfrac{15-\sqrt{x}}{x-25}+\dfrac{2}{\sqrt{x}+5}\right):\dfrac{\sqrt{x}+1}{\sqrt{x}-5}\left(x\ge0;x\ne1\right)\)
\(=\left(\dfrac{15-\sqrt{x}}{\left(\sqrt{x}-5\right).\left(\sqrt{x}+5\right)}+\dfrac{2.\left(\sqrt{x}-5\right)}{\left(\sqrt{x}-5\right).\left(\sqrt{x}+5\right)}\right):\dfrac{\sqrt{x}+1}{\sqrt{x}-5}\)
\(=\dfrac{15-\sqrt{x}+2\sqrt{x}-10}{\left(\sqrt{x}-5\right).\left(\sqrt{x}+5\right)}:\dfrac{\sqrt{x}+1}{\sqrt{x}-5}\)
\(=\dfrac{\sqrt{x}+5}{\left(\sqrt{x}-5\right).\left(\sqrt{x}+5\right)}.\dfrac{\sqrt{x}-5}{\sqrt{x}+1}\)
\(\dfrac{1}{\sqrt{x}+1}\)
1) x-7\(\sqrt{x-3}\) -9=0 2) \(\sqrt{x+3}\) =5-\(\sqrt{x-2}\) 3) \(\sqrt{x-4\sqrt{x+4}}\) =3
1.
ĐKXĐ: \(x\ge3\)
Đặt \(\sqrt{x-3}=t\ge0\Rightarrow x=t^2+3\)
Pt trở thành:
\(t^2+3-7t-9=0\)
\(\Leftrightarrow t^2-7t-6=0\)
\(\Rightarrow\left[{}\begin{matrix}t=\dfrac{7-\sqrt{73}}{2}< 0\left(loại\right)\\t=\dfrac{7+\sqrt{73}}{2}\end{matrix}\right.\)
\(\Rightarrow\sqrt{x-3}=\dfrac{7+\sqrt{73}}{2}\)
\(\Rightarrow x=\dfrac{67+7\sqrt{73}}{2}\)
Nghiệm xấu quá, em nói giáo viên ra đề kiểm tra lại đề là \(x-7\sqrt{x-3}-9=0\) hay \(x-7\sqrt{x-3}+9=0\) nhé
2.
ĐKXĐ: \(x\ge2\)
\(\sqrt{x+3}+\sqrt{x-2}=5\)
\(\Leftrightarrow2x+1+2\sqrt{\left(x+3\right)\left(x-2\right)}=25\)
\(\Leftrightarrow\sqrt{x^2+x-6}=12-x\) (\(x\le12\))
\(\Rightarrow x^2+x-6=\left(12-x\right)^2\)
\(\Leftrightarrow x^2+x-6=144-24x+x^2\)
\(\Rightarrow x=6\)
Cách 2:
\(\Leftrightarrow\sqrt{x+3}-3+\sqrt{x-2}-2=0\)
\(\Leftrightarrow\dfrac{x-6}{\sqrt{x+3}+3}+\dfrac{x-6}{\sqrt{x-2}+2}=0\)
\(\Leftrightarrow\left(x-6\right)\left(\dfrac{1}{\sqrt{x+3}+3}+\dfrac{1}{\sqrt{x-2}+2}\right)=0\)
\(\Leftrightarrow x=6\)
3.
ĐKXĐ: \(x\ge8+8\sqrt{2}\)
Đặt \(\sqrt{x+4}=t>0\) \(\Rightarrow x=t^2-4\)
Pt trở thành:
\(\sqrt{t^2-4-4t}=3\)
\(\Leftrightarrow t^2-4t-4=9\)
\(\Leftrightarrow t^2-4t-13=0\)
\(\Rightarrow\left[{}\begin{matrix}t=2+\sqrt{17}\\t=2-\sqrt{17}< 0\left(loại\right)\end{matrix}\right.\)
\(\Rightarrow\sqrt{x+4}=2+\sqrt{17}\)
\(\Leftrightarrow x=17+4\sqrt{17}\)
Như câu 1, em nhờ giáo viên ra đề kiểm tra lại là \(\sqrt{x-4\sqrt{x+4}}=3\) hay \(\sqrt{x-4\sqrt{x-4}}=3\)
1) x-7\(\sqrt{x-3}\) -9=0 2) \(\sqrt{x+3}\)=5-\(\sqrt{x-2}\) 3) \(\sqrt{x-4\sqrt{x+4}}\) =3
1) x-7\(\sqrt{x-3}\) -9=0 2) \(\sqrt{x+3}\)=5-\(\sqrt{x-2}\) 3) \(\sqrt{x-4\sqrt{x+4}}\) =3
2. ĐKXĐ: $x\geq 2$
PT \(\Rightarrow x+3=(5-\sqrt{x-2})^2\)
\(\Leftrightarrow x+3=25+x-2-10\sqrt{x-2}\)
\(\Leftrightarrow 20=10\sqrt{x-2}\Leftrightarrow x-2=4\Leftrightarrow x=6\)
Thử lại thấy thỏa mãn
Vậy $x=6$
3. ĐKXĐ: $x\geq -4$
PT $\Leftrightarrow \sqrt{(x+4)-4\sqrt{x+4}+4}=3$
$\Leftrightarrow \sqrt{(\sqrt{x+4}-2)^2}=3$
$\Leftrightarrow |\sqrt{x+4}-2|=3$
$\Leftrightarrow \sqrt{x+4}-2=\pm 3$. TH $\sqrt{x+4}-2=-3$ loại vì $\sqrt{x+4}-2\geq -2> -3$
Do đó: $\sqrt{x+4}-2=3$
$\Leftrightarrow \sqrt{x+4}=5$
$\Leftrightarrow x+4=25$
$\Leftrightarrow x=21$ (thỏa mãn)
Vậy $x=21$
** Lần sau bạn chú ý ghi đầy đủ yêu cầu của đề.
Lời giải:
1. ĐKXĐ: $x\geq 3$
PT $\Leftrightarrow x-9=7\sqrt{x-3}$
\(\Leftrightarrow \left\{\begin{matrix} x\geq 9\\ (x-9)^2=49(x-3)\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} x\geq 9\\ x^2-67x+228=0\end{matrix}\right.\Rightarrow x=\frac{67+7\sqrt{73}}{2}\)
A=\(\dfrac{3+2\sqrt{3}}{\sqrt{3}}\)-\(\dfrac{1}{\sqrt{3}-\sqrt{2}}\)+\(\dfrac{2+\sqrt{2}}{\sqrt{2}+1}\)
B=\(\dfrac{\sqrt{x}}{\sqrt{x}+3}\)+\(\dfrac{2\sqrt{x}}{\sqrt{x}-3}\)-\(\dfrac{3x+9}{x-9}\)với x≥0;x≠9
a. Rút gọn biểu thức A và B
b. Tìm x để một phần ba giá trị của A bằng giá trị của biểu thức B
a) Ta có: \(A=\dfrac{3+2\sqrt{3}}{\sqrt{3}}-\dfrac{1}{\sqrt{3}-\sqrt{2}}+\dfrac{2+\sqrt{2}}{\sqrt{2}+1}\)
\(=2+\sqrt{3}-\sqrt{3}-\sqrt{2}+\sqrt{2}\)
=2
Ta có: \(B=\dfrac{\sqrt{x}}{\sqrt{x}+3}+\dfrac{2\sqrt{x}}{\sqrt{x}-3}-\dfrac{3x+9}{x-9}\)
\(=\dfrac{x-3\sqrt{x}+2x+6\sqrt{x}-3x-9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)
\(=\dfrac{3\sqrt{x}-9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}=\dfrac{3}{\sqrt{x}+3}\)
Câu 5: Giải phương trình:
a. \(x\)\(\sqrt{3}\) - \(\sqrt{3}\) = \(1-x\)
b. \(7-\sqrt{x^2-6x+9}=0\)
c. \(\sqrt{9\left(x-2\right)^2}\) - 45 = 0
a) \(\Leftrightarrow\sqrt{3}\left(x-1\right)+\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(\sqrt{3}-1\right)=0\Leftrightarrow x=1\)
b) \(\Leftrightarrow\sqrt{\left(x-3\right)^2}=7\)
\(\Leftrightarrow\left|x-3\right|=7\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=7\\x-3=-7\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=10\\x=-4\end{matrix}\right.\)
c) \(\Leftrightarrow3\left|x-2\right|=45\)
\(\Leftrightarrow\left|x-2\right|=15\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=15\\x-2=-15\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=17\\x=-13\end{matrix}\right.\)
\(a,PT\Leftrightarrow\sqrt{3}\left(x-1\right)=1-x\\ \Leftrightarrow\sqrt{3}\left(x-1\right)+\left(x-1\right)=0\\ \Leftrightarrow\left(x-1\right)\left(\sqrt{3}+1\right)=0\\ \Leftrightarrow x=1\left(\sqrt{3}+1\ne0\right)\\ b,ĐK:x\in R\\ PT\Leftrightarrow\left|x-3\right|=7\Leftrightarrow\left[{}\begin{matrix}x-3=7\\3-x=7\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=10\\x=-4\end{matrix}\right.\\ c,ĐK:x\in R\\ PT\Leftrightarrow3\left|x-2\right|=45\Leftrightarrow\left|x-2\right|=15\\ \Leftrightarrow\left[{}\begin{matrix}x-2=15\\2-x=15\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=17\\x=-13\end{matrix}\right.\)
\(B=\dfrac{2\sqrt{x}}{\sqrt{x}+3}+\dfrac{x+9\sqrt{x}}{9-x};\left(x\ge0;x\ne9;x\ne16\right)\)
\(B=\dfrac{3}{\sqrt{x}-3}+\dfrac{2}{\sqrt{x}+3}+\dfrac{x-5\sqrt{x}-3}{x-9}\)
\(B=\dfrac{\sqrt{x}+1}{\sqrt{x}-1}-\dfrac{x+\sqrt{x}}{x-1};\left(x>0;x\ne1\right)\)
1.
\(A=\dfrac{2\sqrt{x}}{\sqrt{x}+3}+\dfrac{x+9\sqrt{x}}{9-x}\)
\(=\dfrac{2\sqrt{x}}{\sqrt{x}+3}-\dfrac{x+9\sqrt{x}}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)
\(=\dfrac{2\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}-\dfrac{x+9\sqrt{x}}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)
\(=\dfrac{2x-6\sqrt{x}}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}-\dfrac{x+9\sqrt{x}}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)
\(=\dfrac{x-15\sqrt{x}}{x-9}\)
2.
\(B=\dfrac{3}{\sqrt{x}-3}+\dfrac{2}{\sqrt{x}+3}+\dfrac{x-5\sqrt{x}-3}{x-9}\)
\(=\dfrac{3\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}+\dfrac{2\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}+\dfrac{x-5\sqrt{x}-3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(=\dfrac{3\sqrt{x}+9+2\sqrt{x}-6+x-5\sqrt{x}-3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(=\dfrac{x}{x-9}\)
3.
\(C=\dfrac{\sqrt{x}+1}{\sqrt{x}-1}-\dfrac{x+\sqrt{x}}{x-1}\)
\(=\dfrac{\sqrt{x}+1}{\sqrt{x}-1}-\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\dfrac{\sqrt{x}+1}{\sqrt{x}-1}-\dfrac{\sqrt{x}}{\sqrt{x}-1}\)
\(=\dfrac{1}{\sqrt{x}-1}\)
rút gọn \(\dfrac{\sqrt{x}}{\sqrt{x}+3}+\dfrac{2\sqrt{x}}{\sqrt{x}-3}-\dfrac{3x+9}{x-3}\) với x ≥ 0 , x ≠ 9
Sửa đề: \(\dfrac{\sqrt{x}}{\sqrt{x}+3}+\dfrac{2\sqrt{x}}{\sqrt{x}-3}-\dfrac{3x+9}{x-9}\)
\(=\dfrac{\sqrt{x}\left(\sqrt{x}-3\right)+2\sqrt{x}\left(\sqrt{x}+3\right)-3x-9}{x-9}\)
\(=\dfrac{x+3\sqrt{x}+2x+6\sqrt{x}-3x-9}{x-9}\)
\(=\dfrac{9\sqrt{x}-9}{x-9}\)
\(\dfrac{2\sqrt{x}}{\sqrt{x}+3}+\dfrac{x+6\sqrt{x}+9}{9-x}-\dfrac{\sqrt{x}}{\sqrt{x}+3}\) với x≥0;x≠9
rút gọn
\(\dfrac{2\sqrt{x}}{\sqrt{x}+3}+\dfrac{x+6\sqrt{x}+9}{9-x}-\dfrac{\sqrt{x}}{\sqrt{x}+3}\left(dkxd:x\ge0,x\ne9\right)\)
\(=\dfrac{2\sqrt{x}}{\sqrt{x}+3}-\dfrac{\left(\sqrt{x}+3\right)^2}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}-\dfrac{\sqrt{x}}{\sqrt{x}+3}\)
\(=\dfrac{2\sqrt{x}\left(\sqrt{x}-3\right)-\left(x+6\sqrt{x}+9\right)-\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(=\dfrac{2x-6\sqrt{x}-x-6\sqrt{x}-9-x+3\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(=\dfrac{-9\sqrt{x}-9}{x-9}\) với \(x\ge0,x\ne9\)