Cho tan x = -2\(\sqrt{2}\) . Tính giá trị lượng giác còn lại
Cho sinx=-0,8, với x ∈ (\(\pi\);\(\dfrac{3\pi}{2}\))
a)Tìm các giá trị lượng giác còn lại của góc x.
b)Tính giá trị của biểu thức P=2cos2x và Q = tan\(\left(2x+\dfrac{\pi}{3}\right)\)
a.Ta có : \(x\in\left(\pi;\dfrac{3}{2}\pi\right)\Rightarrow cosx< 0\)
\(cosx=-\sqrt{1-sin^2x}=-\sqrt{1-0,8^2}=-0,6\)
\(tanx=\dfrac{4}{3};cotx=\dfrac{3}{4}\)
b. cos 2x = \(cos^2x-sin^2x=0,6^2-0,8^2=-0,28\)
\(P=2.cos2x=-0,56\)
\(Q=tan\left(2x+\dfrac{\pi}{3}\right)=\dfrac{tan2x+tan\dfrac{\pi}{3}}{1-tan2x.tan\dfrac{\pi}{3}}=\dfrac{tan2x+\sqrt{3}}{1-tan2x.\sqrt{3}}\)
tan 2x = \(\dfrac{2tanx}{1-tan^2x}=\dfrac{\dfrac{2.4}{3}}{1-\left(\dfrac{4}{3}\right)^2}=\dfrac{-24}{7}\)
\(Q=\dfrac{-\dfrac{24}{7}+\sqrt{3}}{1+\dfrac{24}{7}.\sqrt{3}}\) \(=\dfrac{-24+7\sqrt{3}}{7+24\sqrt{3}}\)
tìm các giá trị lượng giác còn lại
a) \(tanx=\sqrt{3},0< x< \dfrac{\pi}{2}\)
b) \(cotx=-1,\dfrac{3\pi}{2}< x< 2\pi\)
\(a,,0< x< \dfrac{\pi}{2}\\ \Rightarrow\left\{{}\begin{matrix}sinx>0\\cosx< 0\end{matrix}\right.\\ 1+tan^2x=\dfrac{1}{cos^2x}\\ \Rightarrow cos^2x=\dfrac{1}{4}\\ \Rightarrow cosx=-\dfrac{1}{2}\)
\(sin^2x+cos^2x=1\\ \Rightarrow sin^2x=1-\left(-\dfrac{1}{2}\right)^2\\ =\dfrac{3}{4}\\ \Rightarrow sinx=\dfrac{\sqrt{3}}{2}\)
\(tanx.cotx=1\\ \Rightarrow cotx=1:\sqrt{3}\\ =\dfrac{\sqrt{3}}{3}\)
\(b,\dfrac{3\pi}{2}< x< 2\pi\\ \Rightarrow\left\{{}\begin{matrix}sinx< 0\\cosx>0\end{matrix}\right.\)
\(tanx.cotx=1\\ \Rightarrow tanx=-1\)
\(1+cot^2x=\dfrac{1}{sin^2x}\\ \Rightarrow sin^2x=\dfrac{1}{2}\\ \Rightarrow sinx=-\dfrac{\sqrt{2}}{2}\\ cos^2x+sin^2x=1\\ \Rightarrow cos^2x=\dfrac{1}{2}\\ \Rightarrow cosx=\dfrac{\sqrt{2}}{2}\)
Cho cosx=\(-\dfrac{4}{5}\)với \(\dfrac{\pi}{2}\)<x<\(\pi\).Tính các giá trị lượng giác còn lại của góc x.
\(\sin^2x=\sqrt{1-\left(-\dfrac{4}{5}\right)^2}=\dfrac{9}{25}\)
mà \(\sin x>0\)
nên \(\sin x=\dfrac{3}{5}\)
=>\(\tan x=-\dfrac{3}{4}\)
\(\Leftrightarrow\cot x=-\dfrac{4}{3}\)
Cho sin x=\(\dfrac{21}{29}\) với \(\dfrac{\pi}{2}< x< \pi\). Tính các giá trị lượng giác còn lại của góc x.
\(\dfrac{\pi}{2}< x< \pi\Rightarrow cosx< 0\)
\(\Rightarrow cosx=-\sqrt{1-sin^2x}=-\dfrac{20}{29}\)
\(tanx=\dfrac{sinx}{cosx}=-\dfrac{21}{20}\)
\(cotx=\dfrac{1}{tanx}=-\dfrac{20}{21}\)
tìm các giá trị lượng giác còn lại
a) \(tanx=\dfrac{3}{2},\pi< x< \dfrac{3\pi}{2}\)
b) \(tanx=\dfrac{\sqrt{3}}{3},0< x< 90\)
c) \(cotx=-\dfrac{1}{\sqrt{3}},\dfrac{3\pi}{2}< x< 2\pi\)
a: pi<x<3/2pi
=>sinx<0 và cosx<0
\(1+tan^2x=\dfrac{1}{cos^2x}\)
=>\(\dfrac{1}{cos^2x}=1+\dfrac{9}{4}=\dfrac{13}{4}\)
=>\(cos^2x=\dfrac{4}{13}\)
=>\(\left\{{}\begin{matrix}cosx=-\dfrac{2}{\sqrt{13}}\\sin^2x=\dfrac{9}{13}\end{matrix}\right.\)
mà sin x<0
nên \(sinx=-\dfrac{3}{\sqrt{13}}\)
\(cotx=1:\dfrac{3}{2}=\dfrac{2}{3}\)
b: 0<x<90 độ
=>sin x>0 và cosx>0
\(1+tan^2x=\dfrac{1}{cos^2x}\)
=>\(\dfrac{1}{cos^2x}=1+\dfrac{1}{3}=\dfrac{4}{3}\)
=>\(cos^2x=\dfrac{3}{4}\)
=>\(cosx=\dfrac{\sqrt{3}}{2}\)
=>\(sinx=\dfrac{1}{2}\)
cotx=1:căn 3/3=3/căn 3=căn 3
c: 3/2pi<x<2pi
=>sinx<0 và cosx>0
\(1+cot^2x=\dfrac{1}{sin^2x}\)
=>\(\dfrac{1}{sin^2x}=1+\dfrac{1}{3}=\dfrac{4}{3}\)
=>\(sin^2x=\dfrac{3}{4}\)
mà sin x<0
nên \(sinx=-\dfrac{\sqrt{3}}{2}\)
\(cos^2x=1-\dfrac{3}{4}=\dfrac{1}{4}\)
mà cosx>0
nên cosx=1/2
Cho biết \(\sin {30^o} = \frac{1}{2};\sin {60^o} = \frac{{\sqrt 3 }}{2};\tan {45^o} = 1.\) Sử dụng mối liên hệ giữa các giá trị lượng giác của hai góc bù nhau, phụ nhau để tính giá trị của \(E = 2\cos {30^o} + \sin {150^o} + \tan {135^o}.\)
Ta có:
\(\begin{array}{l}\cos {30^o} = \sin \left( {{{90}^o} - {{30}^o}} \right) = \sin {60^o} = \frac{{\sqrt 3 }}{2};\\\sin {150^o} = \sin \left( {{{180}^o} - {{150}^o}} \right) = \sin {30^o} = \frac{1}{2};\\\tan {135^o} = - \tan \left( {{{180}^o} - {{135}^o}} \right) = - \tan {45^o} = - 1\end{array}\)
\( \Rightarrow E = 2.\frac{{\sqrt 3 }}{2} + \frac{1}{2} - 1 = \sqrt 3 - \frac{1}{2}.\)
Tìm các giá trị lượng giác còn lại biết:
a) Cho sin \(x=-\dfrac{4}{5}\)và \(90^o< x< 180^o\)
b) Cho \(\sin x=\dfrac{\sqrt{3}}{2}\)và \(270^o< x< 360^o\)
c) Cho \(\cos x=-\dfrac{1}{3}\)và \(0^o< x< 90^o\)
a: Sửa đề: sin x=4/5
cosx=-3/5; tan x=-4/3; cot x=-3/4
b: 270 độ<x<360 độ
=>cosx>0
=>cosx=1/2
tan x=căn 3; cot x=1/căn 3
Cho cosα=\(\dfrac{1}{3}\) với 0<α<\(\dfrac{\pi}{2}\).Tính các giá trị lượng giác còn lại của góc α.
Em 2k8 ms học nên k chắc
Vì 0 < \(\alpha< \dfrac{\pi}{2}\) => sin \(\alpha>0\)
Cos \(\alpha=\dfrac{1}{3}\) \(\Rightarrow sin\alpha=\sqrt{1-\dfrac{1}{9}}=\dfrac{2\sqrt{2}}{3}\)
tan \(\alpha=2\sqrt{2}\) ; cot \(\alpha=\dfrac{1}{2\sqrt{2}}\)
Cho sinx=\(\dfrac{3}{5}\) với \(\dfrac{\pi}{2}\)<x<\(\pi\). Tính các giá trị lượng giá còn lại của góc x.
\(\cos^2x=\sqrt{1-\dfrac{9}{25}}=\dfrac{16}{25}\)
mà \(\cos x< 0\)
nên \(\cos x=-\dfrac{4}{5}\)
=>\(\tan x=-\dfrac{3}{4};\cot x=-\dfrac{4}{3}\)