\(tanx=-2\sqrt{2}\)
=>\(cotx=\dfrac{1}{-2\sqrt{2}}=\dfrac{-\sqrt{2}}{4}\)
\(tanx=-2\sqrt{2}\)
=>\(\dfrac{sinx}{cosx}=-2\sqrt{2}\)
=>sin x và cosx khác dấu
\(1+tan^2x=\dfrac{1}{cos^2x}\)
=>\(\dfrac{1}{cos^2x}=1+8=9\)
=>\(cos^2x=\dfrac{1}{9}\)
=>\(\left[{}\begin{matrix}cosx=\dfrac{1}{3}\\cosx=-\dfrac{1}{3}\end{matrix}\right.\)
TH1: \(cosx=\dfrac{1}{3}\)
\(tanx=-2\sqrt{2}\)
=>\(\dfrac{sinx}{cosx}=-2\sqrt{2}\)
=>\(sinx=-2\sqrt{2}\cdot cosx=-2\sqrt{2}\cdot\dfrac{1}{3}=-\dfrac{2\sqrt{2}}{3}\)
TH2: cosx=-1/3
=>\(sinx=-2\sqrt{2}\cdot cosx=-2\sqrt{2}\cdot\dfrac{-1}{3}=\dfrac{2\sqrt{2}}{3}\)