C = tan5\(^o\).tan10\(^{^o}\).tan15\(^o\).....tan80\(^o\).tan85\(^o\)
Tính giá trị của các bt lượng giác sau
a. \(C=\tan20^o.\tan80^o+\tan80^o.\tan140^o+\tan140^o.\tan20^o\)
b. \(D=\tan10^o.\tan70^o+\tan70^o.\tan130^o+\tan130^o.\tan190^o\)
c. \(E=\frac{\cot225^o-\cot79^o.\cot71^o}{\cot259^o+\cot251^o}\)
Không dùng máy tính rút gọn biểu thức và tính giá trị
\(H=cot15^o.cot35^o.cot55^o.cot75^o\\ I=tan10^o.tan20^o.tan30^o....tan80^o\\ K=sin^228^o+sin^236^o+sin^254^o+cos^2152^o\)
\(H=cot15^o.cot35^o.cot55^o.cot75^o\)
\(=\left(cot15^o.cot75^o\right).\left(cot35^o.cot55^o\right)\)
\(=\left(cot15^o.tan15^o\right).\left(cot35^o.tan35^o\right)\)
\(=1\)
\(I=tan10^o.tan20^o.tan30^o....tan80^o\)
\(=\left(tan10^o.cot10^o\right).\left(tan20^o.cot20^o\right).\left(tan30^o.cot30^o\right).\left(tan40^o.cot40^o\right)\)
\(=1\)
PP=4tan(x+4*) ×sinx ×cot(4x+26*)+8tan^2×(3*-x)/1+tan^2 ×(5x+3*)+8cos^2(x-3) . Khi x =30
Sắp sếp các tỉ số sau theo thứ tự tăng dần
\(\sin30^o,\cos42^o,\cos67^o,sin38^o,sin75^o\)
\(\tan27^o,\cot49^o,\tan80^o,\tan25^o,\cot50^o\)
Không dùng máy tính, tính các giá trị biểu thức:
a) A= sin175o.tan85o+cos185o
\(A=\sin\left(90+85\right)^0.\tan\left(85\right)^0+\cos\left(180+5\right)^0\)
\(A=\cos\left(85\right)^0.\tan\left(85\right)^0-\cos\left(5\right)^0\)
\(A=sin85^0-cos5^0\)
\(A=sin\left(90-5\right)^0-cos5^0\)
\(A=cos5^0-cos5^0=0\)
Biết sin15o=\(\frac{\sqrt{6}-\sqrt{2}}{4}\). Tính cos15o, tan15o, cot15o
\(0< 15^0< 90^0\Rightarrow sin,cos,tan\) đều dương
\(cos15=\sqrt{1-sin^215}=\sqrt{1-\left(\frac{\sqrt{6}-\sqrt{2}}{4}\right)^2}=\frac{\sqrt{6}+\sqrt{2}}{4}\)
\(tan15=\frac{sin15}{cos15}=2+\sqrt{3}\)
\(cot15=\frac{1}{tan15}=2-\sqrt{3}\)
hãy viết các tỉ số lượng giác sau thành tỉ số lượng giác của góc nhỏ hơn \(45^o\)
\(\sin60^{^o}\)
\(\cos75^o\)
cotg \(82^o\)
\(\tan80^o\)
\(\sin52^o3'\)
\(\sin60^o=\cos30^o\)
\(\cos75^o=\sin15^o\)
\(\cot82^o=\tan8^o\)
\(\tan80^o=\cot10^o\)
\(\sin52^o3'=\cos37^o57'\)
\(sin60=cos\left(90^0-60^0\right)=cos30^0\)
\(cos75^0=sin\left(90^0-75^0\right)=sin15^0\)
\(cot82^0=tan\left(90^0-82^0\right)=tan8^0\)
\(tan80^0=cot\left(90^0-80^0\right)=cot10^0\)
\(sin52^03'=cos\left(90^0-52^03'\right)=cos37^057'\)
Không dùng MTCT, hãy sắp xếp các tỉ số lượng giác sau theo thứ tự tăng dần :
a ) \(sin42^o\) ; \(cos50^o\) ; \(sin44^o\) ; \(cos47^o\) ; tan44o
b ) \(tan15^o\) ; \(cot37^o\) ; \(tan34^o\) ; \(cot81^o\) ; tan890
Tính giá trị biểu thức
a, \(\tan15^o.\tan25^o.\tan35^o....\tan75^o\)
b, Cho \(\cos\alpha=\frac{20}{29}.\)Tính \(\tan\alpha,\cot\alpha,\sin\alpha\)
\(tan75^0=cot\left(90^0-75^0\right)=cot15^0\) tương tự ta có:
\(tan15.tan25.tan35...tan75=tan15.tan75.tan25.tan65.tan35.tan55.tan45\)
\(=tan15.cot15.tan25.cot25.tan35.cot35.tan45\)
\(=1.1.1=1\)
b/ \(sina=\pm\sqrt{1-cos^2a}=\pm\frac{21}{29}\)
\(\Rightarrow tana=\frac{sina}{cosa}=\pm\frac{21}{20}\); \(cota=\frac{1}{tana}=\pm\frac{20}{21}\)