Tìm a
2x^2yz + 4x^2yz + 6x^2yz +....+ 2a x^2yz = 72 x^2yz
Tính tổng sau: 4ax^2yz−5ax^2yz+a^2x^2yz
A ( -a-a^2 )x^2yz
B (-a +a^2)x^2yz
C (a+a^2)x^2yz
D (a-a^2)x^2yz
a) Tìm các đơn thức đồng dạng trong các đơn thức sau: 5x^2yz ; -x^2y ; -2x^2yz ; x^2yz ; 0,2x^2yz b)Thu gọn và sắp xếp đa thức sau theo lũy thừa giảm của biển M(x)=3x^2 + 5x^3 - x^2+x-3x-4 c)Cho hai đa thức P(x)=x^3x+3 và Q(x)=2x^3+3x^2+x-1. Tính P(x) +Q(x)
a) Các đơn thức đồng dạng trong các đơn thức sau là: \(5x^2yz;-2x^2yz\) ; \(x^2yz\) ; \(0,2x^2yz\)
b) \(M\left(x\right)=3x^2+5x^3-x^2+x-3x-4\)
\(M\left(x\right)=(3x^2-x^2)+5x^3+(x-3x)-4\)
\(M\left(x\right)=2x^2+5x^3-2x-4\)
\(M\left(x\right)=5x^3+2x^2-2x-4\)
c) \(P+Q=\left(x^3x+3\right)+\left(2x^3+3x^2+x-1\right)\)
\(P+Q=x^3x+3+2x^3+3x^2+x-1\)
\(P+Q=\left(x^3+2x^3\right)+\left(x+x\right)+\left(3-1\right)+3x^2\)
\(P+Q=3x^3+2x+2+3x^2\)
Ai giải hộ 4xy+x^2-xz+4y^2-2yz
4xy+x^2-xz+4y^2-2yz
4x^2-[5x-4]^2=0
x^3-6x^2+9x-4=0
Tính tổng của các đơn thức sau: a) -x^2yz; 12x^2yz; -10x^2yz; x^2yz b) 12xy^2z^3; -6xy^2z^3; 20xy^2z^3
a/ -x2yz + 12x2yz - 10x2yz
= (-1 + 12 - 10)(x2yz)
= x2yz
b/ 12xy2z3 - 6xy2z3 + 20xy2z3
= (12 - 6 + 20)(xy2z3)
= 26xy2z3
Tính tổng các đơn thức rồi tính giá trị của biểu thức tìm được tại x=1,y=-1,z=-1
\(ax^2yz+bx^2yz-\frac{1}{2}x^2yz\) ( với a,b là hằng số)
\(ax^2yz+bx^2yz-\frac{1}{2}x^2yz\)
\(=x^2yz\left(a+b-\frac{1}{2}\right)=a+b-\frac{1}{2}\)
Vậy x = 1 ; y = -1 ; z = -1 thì biểu thức trên nhận giá trị \(a+b-\frac{1}{2}\)
Bài 23: Thu gọn
a) A=3.x.\(y^2\)
b) B=3\(x^2y^4\)- 7\(x^2y^4\)-2\(x^2y^4\)
c)C=2\(x^2yz^3\)+ \(\dfrac{1}{3}\)\(x^2yz^3\)-4\(x^2yz^3\)
giúp mk nha đang cần gấp á
a, \(A=3xy^2\)
b, \(B=-6x^2y^4\)
c, \(C=\left(2+\dfrac{1}{3}-4\right)x^2yz^3=-\dfrac{5}{3}x^2yz^3\)
cho A=5x^2y+3xy^2+2yz
B=-5xy^2+2x^2y-2yz+2
Tính A+B bằng 2 cách
Cách 1: Hàng ngang
\(A+B=\left(5x^2y+3xy^2+2yz\right)+\left(-5xy^2+2x^2y-2yz+2\right)\)
\(A+B=5x^2y+3xy^2+2yz-5xy^2+2x^2y-2yz+2\)
\(A+B=\left(5x^2y+2x^2y\right)+\left(3xy^2-5xy^2\right)+\left(2yz-2yz\right)+2\)
\(A+B=7x^2y-2xy^2+2\)
Cách 2: Hàng dọc
\(\begin{matrix}_+A\left(x\right)=5x^2y+3xy^2+2yz\\B\left(x\right)=2x^2y-5xy^2-2yz+2\\\overline{A\left(x\right)+B\left(x\right)=7x^2y-2xy^2+2}\end{matrix}\)
Bạn viết dấu " \(=\) " thẳng hằng với nhau nhá
Câu 80: Tổng của 3 đơn thức \(2^3x^2yz;2x^2yz;-5x^2yz\) là bao nhiêu?
Câu 59: Tính đa thức \(P\left(x\right)=5x^3+2x^4-x^2-5x^3-x^4+1+3x^2+5x^2\)
Câu 80:
Tổng của 3 đơn thức đó là:
\(2^3x^2yz+2x^2yz+\left(-5x^2yz\right)\)
\(=8x^2yz+2x^2yz-5x^2yz\)
\(=\left(8+2-5\right).x^2yz\)
\(=5.x^2yz\)
\(=5x^2yz.\)
Câu 59:
\(P\left(x\right)=5x^3+2x^4-x^2-5x^3-x^4+1+3x^2+5x^2\)
\(\Rightarrow P\left(x\right)=\left(5x^3-5x^3\right)+\left(2x^4-x^4\right)-\left(x^2-3x^2-5x^2\right)+1\)
\(\Rightarrow P\left(x\right)=x^4-\left(-7x^2\right)+1\)
\(\Rightarrow P\left(x\right)=x^4+7x^2+1.\)
Vậy đa thức \(P\left(x\right)=x^4+7x^2+1.\)
Chúc bạn học tốt!
Biết rằng ba đơn thức A, B, C đồng dạng, \(A=2x^2yz,A-B+C=4x^2yz\) và giá trị của B tại x=2, y=-3, z=-4 là 24. Hãy xác định các đơn thức B và C
Lời giải:
Vì $A,B,C$ là 3 đơn thức đồng dạng nên chúng có phần biến như nhau. Đặt \(B=mx^2yz; C=nx^2yz\)
Theo bài ra ta có:
\(A-B+c=2x^2yz-mx^2yz+nx^2yz=(2-m+n)x^2yz=4x^2yz\)
\(\Rightarrow 2-m+n=4\Rightarrow n=2+m\)
Giá trị của $B$ tại $x=2; y=-3; z=-4$ là:
\(m.2^2.(-3)(-4)=24\Rightarrow m=\frac{1}{2}\)
\(\Rightarrow n=2+m=2+\frac{1}{2}=\frac{5}{2}\)
Vậy \(B=\frac{1}{2}x^2yz; C=\frac{5}{2}x^2yz\)