vs \(a\ge0;b\ge0\)
cm \(\sqrt{\frac{a+b}{2}}\ge\frac{\sqrt{a}+\sqrt{b}}{2}\)
\(\dfrac{\sqrt{ab}-b}{b}-\sqrt{\dfrac{a}{b}}\)\(\le\) 0 vs a\(\ge0;b\ge0\)
\(\dfrac{\sqrt{ab}-b}{b}-\sqrt{\dfrac{a}{b}}\le0vớia\ge0;b\ge0\)
chứng minh \(3a^3+7b^3\ge9ab^2\) vs a,b\(\ge0\)
\(3a^3+3b^3+3b^3+b^3\ge3\sqrt[3]{27a^3b^6}+b^3=9ab^2+b^3\ge9ab^2\)
Dấu "=" xảy ra khi \(a=b=0\)
c. rút gọn biểu thức
\(C=\left(\sqrt{a}+\dfrac{b-\sqrt{ab}}{\sqrt{a}+\sqrt{b}}\right):\left(\dfrac{a}{\sqrt{ab}+b}-\dfrac{b}{\sqrt{ab}-a}-\dfrac{a+b}{\sqrt{ab}}\right)\) vs \(a\ge0,a\ne4,a\ne9\)
cho biểu thức C= \(\dfrac{\sqrt{x}+1}{\sqrt{x-1}}-\dfrac{4\sqrt{x}}{x-1}\)vs x\(\ge0\) x\(\ne0\)
a) rút gọn c
b tìm x biết c= \(\dfrac{1}{3}\)
a) \(C=\dfrac{\sqrt{x}+1}{\sqrt{x}-1}-\dfrac{4\sqrt{x}}{x-1}=\dfrac{\left(\sqrt{x}+1\right)^2-4\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\dfrac{x-2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\dfrac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\)
b) \(C=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}=\dfrac{1}{3}\)
\(\Leftrightarrow\sqrt{x}+1=3\sqrt{x}-3\Leftrightarrow2\sqrt{x}=4\)
\(\Leftrightarrow\sqrt{x}=2\Leftrightarrow x=4\left(tm\right)\)
cho a,b,c,d \(\ge0\) cmr:
a+b+\(\dfrac{1}{2}\ge\sqrt{a}+\sqrt{b}\)
giúp mk vs nhé
Ta có :\(a+b+\dfrac{1}{2}=a+b+\dfrac{1}{4}+\dfrac{1}{4}=\left(a+\dfrac{1}{4}\right)+\left(b+\dfrac{1}{4}\right)\)
Áp dụng bất đẳng thức cô si ta có :
\(a+\dfrac{1}{4}\ge2\sqrt{a.\dfrac{1}{4}}=\sqrt{a}\)
\(b+\dfrac{1}{4}\ge2\sqrt{b.\dfrac{1}{4}}=\sqrt{b}\)
Do đó :\(a+b+\dfrac{1}{2}\ge\sqrt{a}+\sqrt{b}\)
Dấu "=" xảy ra khi :\(a=b=\dfrac{1}{4}\)
Vậy với \(a,b\ge0\) thì \(a+b+\dfrac{1}{2}\ge\sqrt{a}+\sqrt{b}\)
Ta có: \(a+b+\dfrac{1}{2}\ge\sqrt{a}+\sqrt{b}\)
\(\Leftrightarrow\left(a-2\sqrt{a}.\dfrac{1}{2}+\dfrac{1}{4}\right)+\left(b-2\sqrt{b}.\dfrac{1}{2}+\dfrac{1}{4}\right)\ge0\)
\(\Leftrightarrow\left(\sqrt{a}-\dfrac{1}{2}\right)^2+\left(\sqrt{b}-\dfrac{1}{2}\right)^2\ge0\) ( luôn đúng )
\(\Rightarrowđpcm\)
c1
cho biểu thức
\(A=\dfrac{\sqrt{x}+1}{\sqrt{x}-2}+\dfrac{2\sqrt{x}}{\sqrt{x}+2}+\dfrac{2+5\sqrt{x}}{4-x}\)vs \(x\ge0,x\ne4\)
a/ rút gọn A
b/ tìm x để A=2
a: \(A=\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+2\right)+2\sqrt{x}\left(\sqrt{x}-2\right)-5\sqrt{x}-2}{x-4}\)
\(=\dfrac{x+3\sqrt{x}+2+2x-4\sqrt{x}-5\sqrt{x}-2}{x-4}\)
\(=\dfrac{3x-6\sqrt{x}}{x-4}=\dfrac{3\sqrt{x}}{\sqrt{x}+2}\)
b: Để A=2 thì \(3\sqrt{x}=2\sqrt{x}+4\)
hay x=16
a,\(\sqrt{\sqrt{\left(\sqrt{3-1}\right)^4}}\)
b,\(\sqrt{\sqrt{x^4}}\)vs \(x\ge0\)
M.N HELP T VS~~~ Ô - MAI - GÓT
a)\(\sqrt{\sqrt{\left(\sqrt{3-1}\right)^4}}\)\(=\sqrt{\left(\sqrt{3-1}\right)^2}\)
\(=\sqrt{3-1}=\sqrt{2}\)
b)\(\sqrt{\sqrt{x^4}}=\sqrt{x^2}=x\)
Cho \(a\ge0\), \(b\ge0\), \(c\ge0\) thoả \(\sqrt{a-b+c}=\sqrt{a}-\sqrt{b}+\sqrt{c}\). Xác định tất cả các giá trị a, b, c.
cho \(a\ge0;b\ge0;c\ge0;\)Cm
\(a+b+\frac{1}{2}\ge\sqrt{a}+\sqrt{b}\)
Ta có :
\(a-\sqrt{a}+\frac{1}{4}=\left(\sqrt{a}-\frac{1}{2}\right)^2\ge0\forall a\ge0\Rightarrow a+\frac{1}{4}\ge\sqrt{a}\)
\(b-\sqrt{b}+\frac{1}{4}=\left(\sqrt{b}-\frac{1}{2}\right)^2\ge0\forall b\ge0\Rightarrow b+\frac{1}{4}\ge\sqrt{b}\)
\(\Rightarrow a+\frac{1}{4}+b+\frac{1}{4}\ge\sqrt{a}+\sqrt{b}\)
\(\Rightarrow a+b+\frac{1}{2}\ge\sqrt{a}+\sqrt{b}\)(đpcm)