I x-\(\dfrac{2}{5}I=\dfrac{1}{4}\)
a)\([x.\dfrac{1}{2}]^{3}=\dfrac{1}{27}\)
b)\([x+\dfrac{1}{2} ]^{2}=\dfrac{4}{5} \)
c) I 3x-4/5 I = 11/5
d) I 2x - 2I = 0
\(a,\left(x.\dfrac{1}{2}\right)^3=\dfrac{1}{27}=\left(\dfrac{1}{3}\right)^3\\ \Rightarrow x.\dfrac{1}{2}=\dfrac{1}{3}\\ \Rightarrow x=\dfrac{1}{3}:\dfrac{1}{2}=\dfrac{2}{3}\\ ---\\ b,\left(x+\dfrac{1}{2}\right)^2=\dfrac{4}{5}=\left(\dfrac{2}{\sqrt{5}}\right)^2=\left(-\dfrac{2}{\sqrt{5}}\right)^2 \\ \Rightarrow\left[{}\begin{matrix}x+\dfrac{1}{2}=\dfrac{2}{\sqrt{5}}\\x+\dfrac{1}{2}=-\dfrac{2}{\sqrt{5}}\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=\dfrac{2}{\sqrt{5}}-\dfrac{1}{2}\\x=-\dfrac{2}{\sqrt{5}}-\dfrac{1}{2}\end{matrix}\right.\\ Vậy:x=\pm\dfrac{2}{\sqrt{5}}-\dfrac{1}{2}\)
\(c,\left|3x-\dfrac{4}{5}\right|=\dfrac{11}{5}\\ \Rightarrow\left[{}\begin{matrix}3x-\dfrac{4}{5}=\dfrac{11}{5}\\3x-\dfrac{4}{5}=-\dfrac{11}{5}\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}3x=\dfrac{11}{5}+\dfrac{4}{5}=3\\3x=-\dfrac{11}{5}+\dfrac{4}{5}=-\dfrac{7}{5}\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=\dfrac{3}{3}=1\\x=-\dfrac{7}{5}:3=-\dfrac{7}{15}\end{matrix}\right.\\ ---\\ d,\left|2x-2\right|=0\\ \Leftrightarrow2x-2=0\\ \Leftrightarrow2x=2\\ \Leftrightarrow x=1\)
a: (x*1/2)^3=1/27
=>x*1/2=1/3
=>x=1/3:1/2=2/3
b: \(\Leftrightarrow\left[{}\begin{matrix}x+\dfrac{1}{2}=\dfrac{2}{\sqrt{5}}\\x+\dfrac{1}{2}=-\dfrac{2}{\sqrt{5}}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2\sqrt{5}}{5}-\dfrac{1}{2}=\dfrac{4\sqrt{5}-5}{10}\\x=\dfrac{-4\sqrt{5}-5}{10}\end{matrix}\right.\)
c: =>3x-4/5=11/5 hoặc 3x-4/5=-11/5
=>3x=3 hoặc 3x=-7/5
=>x=-7/15 hoặc x=1
d: =>2x-2=0
=>2x=2
=>x=1
Bài 1:Thực hiện phép tính.
1) \(\dfrac{2\cdot6^9-2^5\cdot18^4}{2^2\cdot6^8}\) ; 2)\(\dfrac{15^3+5\cdot15^2-5^3}{18^2+6\cdot18^2-6^3}\)
Bài 2:Tìm x, biết:
1)\(^{\left(5x+1\right)^2}\)=\(\dfrac{36}{49}\) ; 2) \(2^{x-1}=16\) ; 3)\(\left(-\dfrac{3}{4}\right)^{3x-1}=-\dfrac{27}{64}\) ; 4)\(\dfrac{-1}{2}+\dfrac{5}{x+3}=\dfrac{-5}{6}\)
5)\(\dfrac{37-x}{x+13}=\dfrac{3}{7}\) ; 6)\(\dfrac{1}{12}:\dfrac{4}{21}=3\dfrac{1}{2}:\left(3x-2\right)\) ; 7) \(^{2^{2x+1}+4^{x+3}=264}\) ; 8) \(\dfrac{x+7}{-20}=\dfrac{-5}{x+7}\)
9) \(\dfrac{x}{8}=\dfrac{x}{x^3}\) ; 10) \(\dfrac{x-1}{x+5}=\dfrac{6}{7}\)
Mọi người giúp mình với,làm ơn !!!!!
Bài 2:
1: =>5x+1=6/7 hoặc 5x+1=-6/7
=>5x=-1/7 hoặc 5x=-13/7
=>x=-1/35 hoặc x=-13/35
2: =>x-1=4
=>x=5
3: =>3x-1=3
=>3x=4
=>x=4/3
4: \(\Leftrightarrow\dfrac{5}{x+3}=\dfrac{-5}{6}+\dfrac{1}{2}=\dfrac{-5+3}{6}=\dfrac{-2}{6}=\dfrac{-1}{3}\)
=>x+3=-15
=>x=-18
7: \(\Leftrightarrow2^{2x+1}+2^{2x+6}=264\)
=>2^2x+1*(1+2^5)=264
=>2^2x+1=8
=>2x+1=3
=>x=1
9: =>x^4=8x
=>x^4-8x=0
=>x=2
GIÚP MÌNH VỚI
a, x - \(\dfrac{5}{7}\)=\(\dfrac{19}{21}\)
b,\(\dfrac{5}{3}\)-I x - \(\dfrac{1}{5}\)I = \(\dfrac{1}{3}\)
c, (x - \(\dfrac{2}{5}\)) = \(\dfrac{1}{4}\)
d, 5\(\sqrt{x}\) - 30 = 15
\(a,x-\dfrac{5}{7}=\dfrac{19}{21}\\ x=\dfrac{34}{21}\\ b,\dfrac{5}{3}-\left|x-\dfrac{1}{5}\right|=\dfrac{1}{3}\\ \left|x-\dfrac{1}{5}\right|=\dfrac{4}{3}\\ TH1:x-\dfrac{1}{5}=\dfrac{4}{3}\\ x=\dfrac{23}{15}\\ TH2:x-\dfrac{1}{5}=-\dfrac{4}{3}\\ x=-\dfrac{17}{15}\\ c,x-\dfrac{2}{5}=\dfrac{1}{4}\\ x=\dfrac{13}{20}\\ d,5\sqrt{x}-30=15\\ 5\sqrt{x}=45\\ \sqrt{x}=9\\ x=9^2=81\)
1. Tính :
a, \(A=\dfrac{\dfrac{1}{3}-\dfrac{5}{2}}{\dfrac{3}{4}-\dfrac{1}{2}}.\dfrac{\dfrac{5}{6}+\dfrac{7}{3}}{1-\dfrac{5}{6}}.\dfrac{\dfrac{-2}{5}+1}{\dfrac{2}{5}-1}\).
b, \(B=\dfrac{\dfrac{1}{3}-\dfrac{4}{5}}{\dfrac{1}{3}+\dfrac{4}{5}}.\dfrac{\dfrac{3}{4}-\dfrac{5}{3}}{\dfrac{3}{4}+\dfrac{5}{3}}:\dfrac{\dfrac{4}{5}-1}{1-\dfrac{2}{3}}\).
1.Tìm x, y thuộc Z :
50- 5*(x + 3 )3=2|3- y|
2.Tính :
a, \(\dfrac{-1}{20}+\dfrac{-1}{30}+\dfrac{-1}{42}+\dfrac{-1}{56}+\dfrac{-1}{72}+\dfrac{-1}{90}\)
b,\(\dfrac{5}{2.1}+\dfrac{4}{1.11}+\dfrac{3}{11.2}+\dfrac{1}{2.15}+\dfrac{13}{15.4}\)
3.Tìm x :
a, \(\dfrac{x-5}{8}=\dfrac{18}{x-5}\) b, ( x-2 )10= ( 2-x )8
2. Tính:
a, \(\dfrac{-1}{20}+\dfrac{-1}{30}+\dfrac{-1}{42}+\dfrac{-1}{56}+\dfrac{-1}{72}+\dfrac{-1}{90}\)
=\(\left(\dfrac{-1}{20}+\dfrac{-1}{72}\right)+\left(\dfrac{-1}{30}+\dfrac{-1}{90}\right)+\left(\dfrac{-1}{42}+\dfrac{-1}{56}\right)\)
=\(\left(\dfrac{-18}{360}+\dfrac{-5}{360}\right)+\left(\dfrac{-3}{90}+\dfrac{-1}{90}\right)+\left(\dfrac{-4}{168}+\dfrac{-3}{168}\right)\)
=\(\dfrac{-23}{360}+\dfrac{-4}{90}+\dfrac{-7}{168}\)
=\(\dfrac{-23}{360}+\dfrac{-16}{360}+\dfrac{-15}{360}\)=\(\dfrac{-54}{360}=\dfrac{-3}{20}\)
b, \(\dfrac{5}{2.1}+\dfrac{4}{1.11}+\dfrac{3}{11.2}+\dfrac{1}{2.15}+\dfrac{13}{15.4}\)
=\(\dfrac{5}{2}+\dfrac{4}{1}.\dfrac{1}{11}+\dfrac{1}{11}.\dfrac{3}{2}+\dfrac{1}{2}.\dfrac{1}{15}+\dfrac{1}{15}.\dfrac{13}{4}\)
=\(\dfrac{5}{2}+\dfrac{1}{11}.\left(\dfrac{4}{1}+\dfrac{3}{2}\right)+\dfrac{1}{15}.\left(\dfrac{1}{2}+\dfrac{13}{4}\right)\)
=\(\dfrac{5}{2}+\dfrac{1}{11}.\dfrac{11}{2}+\dfrac{1}{15}.\dfrac{15}{4}\)
=\(\dfrac{5}{2}+\dfrac{1}{2}+\dfrac{1}{4}\)
=\(\dfrac{10}{4}+\dfrac{2}{4}+\dfrac{1}{4}\)
=\(\dfrac{13}{4}\)
3. Tìm x
a, \(\dfrac{x-5}{8}=\dfrac{18}{x-5}\)
\(\left(x-5\right).\left(x-5\right)=8.18\)
\(\left(x-5\right)^2=144\)
\(x-5=\sqrt{144}\)
\(x-5=12\)
\(x=12+5\)
\(x=17\)
b,\(\left(x-2\right)^{10}=\left(2-x\right)^8\)
\(x^{10}-2^{10}=x^8-2^8\)
\(x^{10}+x^8=2^{10}+2^8\)
\(\Rightarrow x=2\)
2b, Đặt giá trị biểu thức trên là B.
Ta có: \(B=\dfrac{5}{2.1}+\dfrac{4}{1.11}+\dfrac{3}{11.2}+\dfrac{1}{2.15}+\dfrac{13}{15.4}\)
\(B=\dfrac{7}{7}\left(\dfrac{5}{2.1}+\dfrac{4}{1.11}+\dfrac{3}{11.2}+\dfrac{1}{2.15}+\dfrac{13}{15.4}\right)\)
\(B=7.\left(\dfrac{5}{2.7}+\dfrac{4}{7.11}+\dfrac{3}{11.14}+\dfrac{1}{14.15}+\dfrac{13}{15.28}\right)\)
\(B=7.\left(\dfrac{1}{2}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{14}+\dfrac{1}{14}-\dfrac{1}{15}+\dfrac{1}{15}-\dfrac{1}{28}\right)\)
\(B=7.\left(\dfrac{1}{2}-\dfrac{1}{28}\right)\)
\(B=7.\left(\dfrac{14}{28}-\dfrac{1}{28}\right)=7.\dfrac{13}{28}=\dfrac{13}{4}\)
1)Tính giá trị biểu thức:
\(\dfrac{\left(13\dfrac{1}{4}-2\dfrac{5}{27}-10\dfrac{5}{6}\right).230\dfrac{1}{25}+46\dfrac{3}{4}}{\left(1\dfrac{3}{7}+\dfrac{10}{3}\right):\left(12\dfrac{1}{3}-14\dfrac{2}{7}\right)}\)
2)Tìm x biết:
a) \(42+\dfrac{3}{7}.\left|3x-1\right|=12\)
b) \(\left|2x-1\right|=\left|x+2\right|\)
c) \(2.3^x.3^2=18\) với \(x\in N\)
\(\dfrac{\left(13\dfrac{1}{4}-1\dfrac{5}{27}-10\dfrac{5}{6}\right).230\dfrac{1}{25}+46\dfrac{3}{4}}{\left(1\dfrac{3}{7}+\dfrac{10}{3}\right):\left(12\dfrac{1}{3}-14\dfrac{2}{7}\right)}\)
\(=\dfrac{1\dfrac{25}{108}.230\dfrac{1}{25}+46\dfrac{3}{4}}{4\dfrac{16}{21}:\left(-1\dfrac{20}{21}\right)}=\dfrac{330\dfrac{1}{25}}{-2\dfrac{18}{41}}=-135,3164\)
Bài 1: Tính
\(\dfrac{1}{2}.\dfrac{1}{-3}+\dfrac{1}{-3}.\dfrac{1}{4}+\dfrac{1}{4}.\dfrac{1}{-5}+\dfrac{1}{-5}.\dfrac{1}{6}\)
Bài 2: Tìm x ∈ Q:
\(\left(x-\dfrac{4}{7}\right).\left(x+\dfrac{1}{2}\right)>0\)
Câu 2:
(x-4/7)(x+1/2)>0
=>x-4/7>0 hoặc x+1/2<0
=>x>4/7 hoặc x<-1/2
Bài 1:Tìm nghiệm
a)f(x)=3(x-1)-4
b)g(x)=2(x-1)+3(x+2)
c)h(x)=4x2+4x-1
d)k(x)=\(\dfrac{x-1}{2}\) +\(\dfrac{x-2}{3}\)+1
Bài2:tìm x, y, z
a) \(\dfrac{x}{2}\)=\(\dfrac{y}{3}\)=\(\dfrac{z}{-4}\) và x+y+z =-5
b)\(\dfrac{x}{3}\)=\(\dfrac{y}{2}\)=;\(\dfrac{y}{3}\)=\(\dfrac{z}{5}\) và x+y-2z=11
c)\(\dfrac{x+1}{2}\)=\(\dfrac{y-2}{3}\)=\(\dfrac{z+3}{4}\) và x+2y-z=-30
Bài 1:
a: =>3x-3-4=0
=>3x=7
hay x=7/3
b: =>2x-2+3x+6=0
=>5x+4=0
hay x=-4/5
c: =>\(4x^2+4x-1=0\)
hay \(x\in\left\{\dfrac{-1+\sqrt{2}}{2};\dfrac{-1-\sqrt{2}}{2}\right\}\)
d: \(\Leftrightarrow3x-3+2x-4+6=0\)
=>5x+1=0
hay x=-1/5
1/ I=\(\int_{-2}^2\left|x^2-1\right|dx\)
2/ I= \(\int_1^e\sqrt{x}.lnxdx\)
3/ I= \(\int_0^{\dfrac{\pi}{2}}\left(e^{sinx}+cosx\right)cosxdx\)
4/ I= \(\int_0^{\dfrac{pi}{2}}\dfrac{sin2x}{\sqrt{cos^2x+4sin^2x}}dx\)
5/ I= \(\int_0^{\dfrac{\pi}{4}}\sqrt{2}cos\sqrt{x}dx\)
6/ I= \(\int_1^{\sqrt{e}}\dfrac{1}{x\sqrt{1-ln^2x}}dx\)
7/ I= \(\int_{-\dfrac{\pi}{4}}^{\dfrac{\pi}{4}}\dfrac{sin^6x+cos^6x}{6^x+1}dx\)
Nhìn đề dữ dội y hệt cr của tui z :( Để làm từ từ
Lập bảng xét dấu cho \(\left|x^2-1\right|\) trên đoạn \(\left[-2;2\right]\)
x | -2 | -1 | 1 | 2 |
\(x^2-1\) | 0 | 0 |
\(\left(-2;-1\right):+\)
\(\left(-1;1\right):-\)
\(\left(1;2\right):+\)
\(\Rightarrow I=\int\limits^{-1}_{-2}\left|x^2-1\right|dx+\int\limits^1_{-1}\left|x^2-1\right|dx+\int\limits^2_1\left|x^2-1\right|dx\)
\(=\int\limits^{-1}_{-2}\left(x^2-1\right)dx-\int\limits^1_{-1}\left(x^2-1\right)dx+\int\limits^2_1\left(x^2-1\right)dx\)
\(=\left(\dfrac{x^3}{3}-x\right)|^{-1}_{-2}-\left(\dfrac{x^3}{3}-x\right)|^1_{-1}+\left(\dfrac{x^3}{3}-x\right)|^2_1\)
Bạn tự thay cận vô tính nhé :), hiện mình ko cầm theo máy tính
2/ \(I=\int\limits^e_1x^{\dfrac{1}{2}}.lnx.dx\)
\(\left\{{}\begin{matrix}u=lnx\\dv=x^{\dfrac{1}{2}}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}du=\dfrac{dx}{x}\\v=\dfrac{2}{3}.x^{\dfrac{3}{2}}\end{matrix}\right.\)
\(\Rightarrow I=\dfrac{2}{3}.x^{\dfrac{3}{2}}.lnx|^e_1-\dfrac{2}{3}\int\limits^e_1x^{\dfrac{1}{2}}.dx\)
\(=\dfrac{2}{3}.x^{\dfrac{3}{2}}.lnx|^e_1-\dfrac{2}{3}.\dfrac{2}{3}.x^{\dfrac{3}{2}}|^e_1=...\)
3/ \(I=\int\limits^{\dfrac{\pi}{2}}_0e^{\sin x}.\cos x.dx+\int\limits^{\dfrac{\pi}{2}}_0\cos^2x.dx\)
Xét \(A=\int\limits^{\dfrac{\pi}{2}}_0e^{\sin x}.\cos x.dx\)
\(t=\sin x\Rightarrow dt=\cos x.dx\Rightarrow A=\int\limits^{\dfrac{\pi}{2}}_0e^t.dt=e^{\sin x}|^{\dfrac{\pi}{2}}_0\)
Xét \(B=\int\limits^{\dfrac{\pi}{2}}_0\cos^2x.dx\)
\(=\int\limits^{\dfrac{\pi}{2}}_0\dfrac{1+\cos2x}{2}.dx=\dfrac{1}{2}.\int\limits^{\dfrac{\pi}{2}}_0dx+\dfrac{1}{2}\int\limits^{\dfrac{\pi}{2}}_0\cos2x.dx\)
\(=\dfrac{1}{2}x|^{\dfrac{\pi}{2}}_0+\dfrac{1}{2}.\dfrac{1}{2}\sin2x|^{\dfrac{\pi}{2}}_0\)
I=A+B=...