A =1+2+22+23+ .... +22022
làm nhanh giúp mình
21 + 22 + 23 + .......... + 22022
a) Tính A
b)Tìm x để A + 2 = 2x
Nhanh giúp mình với ạ
a) \(A=2+2^2+2^3+...+2^{2022}\)
\(2A=2.\left(2+2^2+2^3+...+2^{2022}\right)\)
\(2.A=2^2+2^3+2^4+...+2^{2023}\)
\(2A-A=\left(2^2+2^3+2^4+...+2^{2023}\right)-\left(2+2^2+2^3+...+2^{2022}\right)\)
\(A=2^{2023}-2\)
b) A + 2 = 2x
Hay \(\left(2^{2023}-2\right)+2=2^x\)
\(2^{2023}-2+2=2^x\)
\(2^{2023}=2^x\)
\(\Rightarrow x=2023\)
a, A = 21 + 22 + 23 + ...+ 22022
2A = 22 + 23 +...+ 22022 + 22023
2A - A = 22023 - 21
A = 22023 - 2
b, A + 2 = 2\(^x\) ⇒ 22023 - 2 + 2 = 2\(x\)
22023 = 2\(^x\)
2023 = \(x\)
tính tổng của dãy sau :
B = 2 + 22 + 23 + 24 +...+2100
2. chúng minh rằng A= 1 + 3 + 32 +33+...+399 ⋮ 40
mn giúp mình nhanh nhất nha ^^ cảm ơn mn
\(B=2+2^2+2^3+...+2^{100}\)
\(\Rightarrow2B=2^2+2^3+2^4+...+2^{101}\)
\(\Rightarrow2B-B=2^2+2^3+2^4+...+2^{101}-2-2^2-2^3-...-2^{100}\)
\(\Rightarrow2B-B=2^{101}-2\)
\(A=1+3+3^2+3^3+...+3^{99}\\ \Rightarrow A=\left(1+3+3^2+3^3\right)+\left(3^4+3^5+3^6+3^7\right)+...+\left(3^{96}+3^{97}+3^{98}+3^{99}\right)\)
\(\Rightarrow A=\left(1+3+3^2+3^3\right)+3^4\left(1+3+3^2+3^3\right)+...+3^{96}\left(1+3+3^2+3^3\right)\)
\(\Rightarrow A=\left(1+3+3^2+3^3\right)\left(1+3^4+...+9^{96}\right)\)
\(\Rightarrow A=40\left(1+3^4+...+9^{96}\right)⋮40\)
tính nhanh : 4/7 x 15/2 x 63/11 x 22/9 x 23/30 x 24/23
giải nhanh giúp mình ạ !!!
Bài 1: Tìm x là số tự nhiên, biết:
1. Cho A = 21 + 22 + 23 + ....... + 22022
2. Cho B = 5 + 52 + 53 +...........+ 52022
a) Tính A,B
b) Tìm x để A + 2 = 2x
Tìm x để biết 4B + 5 = 5x
Nhanh giúp mình với ạ!
a) Ta có A = 21 + 22 + 23 + ... + 22022
2A = 22 + 23 + 24 + ... + 22023
2A - A = ( 22 + 23 + 24 + ... + 22023 ) - ( 21 + 22 + 23 + ... + 22022 )
A = 22023 - 2
Lại có B = 5 + 52 + 53 + ... + 52022
5B = 52 + 53 + 54 + ... + 52023
5B - B = ( 52 + 53 + 54 + ... + 52023 ) - ( 5 + 52 + 53 + ... + 52022 )
4B = 52023 - 5
B = \(\dfrac{5^{2023}-5}{4}\)
b) Ta có : A + 2 = 2x
⇒ 22023 - 2 + 2 = 2x
⇒ 22023 = 2x
Vậy x = 2023
Lại có : 4B + 5 = 5x
⇒ 4 . \(\dfrac{5^{2023}-5}{4}\) + 5 = 5x
⇒ 52023 - 5 + 5 = 5x
⇒ 52023 = 5x
Vậy x = 2023
Mong các bạn giúp cho mình nhanh nhanh một tí. Ngày mai mình đi học rồi!
Đề bài: So sánh 2 lũy thừa
1) \(2^{300}vs3^{200}\)
2) \(5^{23}vs6.5^{22}\)
1)
Ta có :
2300 = ( 23 )100 = 8100
3200 = ( 32 )100 = 9100
vì 8100 < 9100 nên 2300 < 3200
2)
Ta có :
523 = 522 . 5
vì 522 . 5 < 522 . 6 nên 523 < 6 . 522
1) \(2^{300}vs3^{200}\)
Ta có: \(2^{300}=\left(2^3\right)^{100}=8^{100}\)
\(3^{200}=\left(3^2\right)^{100}=9^{100}\)
Vì 8 < 9 nên 8100<9100 => 2300 < 3200
2) \(5^{23}vs6.5^{22}\)
Ta có: \(5^{23}=5^{22}.5\)
Vì 522 = 522 và 5 < 6 nên 522. 5 < 522 . 6 => 523 < 6.522
1 ta có
2300= (23)100 = 8100
3200= (32)100 = 9100
Vì 8100 < 9100 vậy 2300 < 3200
2 ta có: 523= 522.5.
vì 522.5 < 6.522 nên 523 < 6.522
Cho A = 1 + 2 + 22 + 23 + 24 +…299 Chứng minh rằng: A chia hết cho 3
Ghi cách làm và đáp án giúp mình
\(A=1+2+2^2+2^3+....+2^{98}+2^{99}\\ \Leftrightarrow A=\left(1+2\right)+\left(2^2+2^3\right)+\left(2^4+2^5\right)+....+\left(2^{98}+2^{99}\right)\\ \Leftrightarrow A=3+2^2.\left(1+2\right)+2^4.\left(1+2\right)+....+2^{98}.\left(1+2\right)\\ \Leftrightarrow A=3+3.2^2+3.2^4+....+3.2^{98}\\ \Leftrightarrow A=3.\left(1+2^2+2^4+...+2^{98}\right)⋮3\)
Tính:
1 + 2 + 22+ 23+ 24 +... + 299 + 2100
Mọi người giúp mình nha
Đặt A=1 + 2 + 22+ 23+ 24 +... + 299 + 2100
=>2A=2 + 22+ 23+ 24 +... + 299 + 2100+2101
=>2A-A=(2 + 22+ 23+ 24 +... + 299 + 2100+2101)-(1 + 2 + 22+ 23+ 24 +... + 299 + 2100)
=>A=2101-1
Tính nhanh
41+ 42 + 43 + 44 - 21 - 22 - 23 - 24
Giúp mình với !!!!!😉😉
41+42+43+44-21-22-23-24
=( 41- 21 )+ (42-22)+(43-23)+(44-24)
=20 + 20 +20 +20
=20 . 4
=80
41+ 42 + 43 + 44 - 21 - 22 - 23 - 24 = 80
41 + 42 + 43 + 44 - 21 - 22 - 23 - 24
= ( 41 - 21 ) + ( 42 - 22 ) + ( 43 - 23 ) + ( 44 - 24 )
= 20 + 20 + 20 + 20
= 80
Tính hợp lí: 1 + 2 + 22 + 23 + 24 + ... 299 + 2100
Giúp mình nha!? Ai đúng mình tick cho
\(A=1+2+2^2+2^3+2^4+...+2^{99}+2^{100}\)
\(\Rightarrow2A=2+2^2+2^3+2^4+2^5+...+2^{100}+2^{101}\)
\(\Rightarrow2A-A=2^{101}-1\)
\(\Leftrightarrow A=2^{101}-1\)
Đặt \(A=1+2+2^2+2^3+2^4+...+2^{99}+2^{100}\)
\(\Rightarrow2A=2+2^2+2^3+...+2^{100}+2^{101}\)
\(\Rightarrow A=2A-A=\left(2+2^2+2^3+2^4+...+2^{101}\right)-\left(1+2+2^2+2^3+...+2^{100}\right)=2^{101}-1\)