\(A=1+2+2^2+...+2^{2022}\)
\(2A=2\cdot\left(1+2+2^2+...+2^{2022}\right)\)
\(2A=2+2^2+2^3+...+2^{2023}\)
\(2A-A=\left(2+2^2+2^3+...+2^{2023}\right)-\left(1+2+2^2+...+2^{2022}\right)\)
\(A=\left(2-2\right)+\left(2^2-2^2\right)+...+\left(2^{2023}-1\right)\)
\(A=0+0+...+2^{2023}-1\)
\(A=2^{2023}-1\)
Vậy: ...