Tìm M biết \(\dfrac{7}{3}\)x\(^3\)y\(^2\) : M = 7xy\(^2\)
Bài 1:Tìm đa thức M
a)\(\dfrac{^{x^3}+27}{x^2-3x+9}\)=\(\dfrac{x+3}{M}\)
b)\(\dfrac{M}{x+4}\)=\(\dfrac{x^2-8x+16}{16-x^2}\)
c)\(\dfrac{x-2y}{M}\)=\(\dfrac{3x^2-7xy+2y^2}{3x^2+5xy-2y^2}\)
a, \(\dfrac{x^3+27}{x^2-3x+9}=\dfrac{x+3}{M}\Leftrightarrow\dfrac{\left(x+3\right)\left(x^2-3x+9\right)}{x^2-3x+9}=\dfrac{x+3}{M}\)
\(\Rightarrow M=\dfrac{x+3}{x+3}=1\)
b, \(\dfrac{M}{x+4}=\dfrac{x^2-8x+16}{16-x^2}=\dfrac{\left(x-4\right)^2}{\left(4-x\right)\left(x+4\right)}=\dfrac{4-x}{x+4}\)
\(\Rightarrow M=\dfrac{\left(4-x\right)\left(x+4\right)}{x+4}=4-x\)
c, tương tự
Bài 3 : Tìm đa hức M , biết
a) M+(5x^2-2xy)=6x^2+9xy-y^2
b)M-(3xy-4y6^2)=x^2-7xy+8y^2
c)25x^2y-13x^2y+y^3)-M=11x^2y-2y^2
d)M+(12x^4-15x^2y+2xy^2+7)=0
a) M + (5x2 - 2xy) = 6x2 + 9xy - y2
=> M = (6x2 + 9xy - y2) - (5x2 - 2xy)
=> M = 6x2 + 9xy - y2 - 5x2 + 2xy = (6x2 - 5x2) + (9xy + 2xy) - y2 = x2 + 11xy - y2
b) Sửa đề lại đi nhé
c) (25x2y - 13x2y + y3) - M = 11x2y - 2y2
=> M = (25x2y - 13x2y + y3) - (11x2y - 2y2)
=> M = 25x2y - 13x2y + y3 - 11x2y + 2y2
=> M = x2y + y3 + 2y2
d) M = 0 - (12x4 - 15x2y + 2xy2 + 7) = -12x4 + 15x2y - 2xy2 - 7
a) Ta có : M = 6x2 + 9xy - y2 - (5x2 - 2xy)
= 6x2 + 9xy - y2 - 5x2 + 2xy
= x2 + 11xy - y2
b) Ta có M = x2 - 7xy + 8y2 - (3xy - 24y2)
= x2 - 7xy + 8y2 - 3xy + 24y2
= x2 - 10xy + 32y2
c) Ta có M = 25x2.y- 13x2y + y3 - (11x2y - 2y2)
= 25x2.y- 13x2y + y3 - 11x2y + 2y2
= x2y + y3 + 2y2
d) Ta có M = -(12x4 - 15x2y + 2xy2 + 7)
= -12x4 + 15x2y - 2xy2 - 7
Với mỗi đa thức sau, thu gọn (nếu cần) và tìm bậc của nó.
a) \(Q = 5{x^2} - 7xy + 2,5{y^2} + 2x - 8,3y + 1;\)
b) \(H = 4{x^5} - \dfrac{1}{2}{x^3}y + \dfrac{3}{4}{x^2}{y^2} - 4{x^5} + 2{y^2} - 7.\)
a) \(Q = 5{x^2} - 7xy + 2,5{y^2} + 2x - 8,3y + 1\) có bậc là 2.
b)
\(\begin{array}{l}H = 4{x^5} - \dfrac{1}{2}{x^3}y + \dfrac{3}{4}{x^2}{y^2} - 4{x^5} + 2{y^2} - 7\\ = \left( {4{x^5} - 4{x^5}} \right) - \dfrac{1}{2}{x^3}y + \dfrac{3}{4}{x^2}{y^2} + 2{y^2} - 7\\ = - \dfrac{1}{2}{x^3}y + \dfrac{3}{4}{x^2}{y^2} + 2{y^2} - 7\end{array}\)
Đa thức H có bậc là 4.
tìm đa thức m biết m-3xyz+5x^2-7xy+9=6x^2+xyz+2xy+3-y^2
`Answer:`
`m-3xyz+5x^2-7xy+9=6x^2+xyz+2xy+3-y^2`
`<=>m=(6x^2+xyz+2xy+3-y^2)+(3xyz-5x^2+7xy-9)`
`<=>(xyz+3xyz)+(6x^2-5x^2)+(2xy+7xy)-y^2+(3-9)`
`<=>m=4xyz+x^2+9xy-y^2-6`
Cho biểu thức:
M=(-3/7.x^3.y).7xy^3/12-x^2.y^2.(-3/4.x^2.y^2)
a) Thu gọn biểu thức M
b) Xác định phần hệ số, phần biến và bậc của M
c)Tìm giá trị của M khi x=-1 và y=-2
Giúp mình với ạ mình cần gấp lắm
a: \(M=\left(\dfrac{-3}{7}x^3y\right)\cdot\dfrac{7xy^3}{12}-x^2y^2\cdot\left(-\dfrac{3}{4}x^2y^2\right)\)
\(=\dfrac{-1}{4}x^4y^4+\dfrac{3}{4}x^4y^4\)
\(=\dfrac{1}{2}x^4y^4\)
b: Hệ số là 1/2
Biến là \(x^4;y^4\)
bậc là 4+4=8
c: Thay x=-1 và y=-2 vào M, ta được:
\(M=\dfrac{1}{2}\left(-1\right)^4\cdot\left(-2\right)^4=\dfrac{1}{2}\cdot16=8\)
Bài 1: Tìm x; y ϵ \(ℤ\)
a) 2x - y\(\sqrt{6}\) = 5 + (x + 1)\(\sqrt{6}\)
b) 5x + y - (2x -1)\(\sqrt{7}\) = y\(\sqrt{7}\) + 2
Bài 2: So sánh M và N
M = \(\dfrac{\dfrac{3}{4}+\dfrac{3}{5}+\dfrac{3}{7}-\dfrac{3}{11}}{\dfrac{6}{4}+\dfrac{6}{5}+\dfrac{6}{7}-\dfrac{6}{11}}\)
N = \(\dfrac{\dfrac{2}{3}+\dfrac{2}{5}-\dfrac{2}{7}-\dfrac{2}{11}}{\dfrac{6}{2}+\dfrac{6}{5}-\dfrac{6}{7}-\dfrac{6}{11}}\)
Bài 3: Chứng minh:
\(\dfrac{1}{2!}+\dfrac{1}{3!}+\dfrac{1}{4!}+...+\dfrac{1}{2023!}< 1\)
Bài 3 :
\(\dfrac{1}{2!}+\dfrac{1}{3!}+\dfrac{1}{4!}+...+\dfrac{1}{2023!}\)
\(\dfrac{1}{2!}=\dfrac{1}{2.1}=1-\dfrac{1}{2}< 1\)
\(\dfrac{1}{3!}=\dfrac{1}{3.2.1}=1-\dfrac{1}{2}-\dfrac{1}{3}< 1\)
\(\dfrac{1}{4!}=\dfrac{1}{4.3.2.1}< \dfrac{1}{3!}< \dfrac{1}{2!}< 1\)
.....
\(\)\(\dfrac{1}{2023!}=\dfrac{1}{2023.2022....2.1}< \dfrac{1}{2022!}< ...< \dfrac{1}{2!}< 1\)
\(\Rightarrow\dfrac{1}{2!}+\dfrac{1}{3!}+\dfrac{1}{4!}+...+\dfrac{1}{2023!}< 1\)
Bài 1:T ìm đa thức M sao cho tổng của M và đa thức x2+32y-5xy2-7xy-2 không chứa biến X
Bài 2 :Tìm đa thức M sao cho tổng của M và đa thức x2+32y-5xy2-7xy-2 là một đa thức bặc 0
mk chỉ làm đc bà 1 thôi nha
M+x2+32y-5xy2-7xy-2
=M+(x2-5xy2-7xy)+(32y-2)
Để đa thức tổng ko chứa biến x thì:
M+(x2-5xy2-7xy)=0
=> M=0-(x2-5xy2-7xy)
M=-x2-5xy2-7xy
1:\(M=3x^2-5y^3\)
+\(N=2x^2+y^3-1\)
Tính M+N;M-N.
2:Tính tổng giá trị của đa thức
a) \(5x^5+6xy-\dfrac{-3}{2}xy^4-xy^2+7xy^4-10x^5y+\dfrac{9}{2}xy^4\);tại x=1;y=2-1
3:Tìm đa thức Q biết.
\(Q=\left(5x^3+2y^2\right)=3x^3-2x^2\)
\(M+N=3x^2-5y^3+2x^2+y^3-1\)
\(=\left(3x^2+2x^2\right)+\left(-5y^3+y^3\right)-1\)
\(=5x^3-4y^3-1\)
\(M-N=3x^2-5y^3-2x^2-y^3+1\)
\(=\left(3x^2-2x^2\right)+\left(-5y^3-y^3\right)+1\)
\(=x^2-6y^3+1\)
Bài 1: Tìm hai số x và y biết x : 2 = y : (-5) và x - y = -7
Bài 2: Tìm x, biết:
a) ( \(-\dfrac{1}{3}\))\(^3\) . x = \(\dfrac{1}{81}\)
Bài 3: Tính
a) (\(-\dfrac{1}{3}\))\(^7\) . 3\(^7\)
b) (0,125)\(^3\) . 512
c) \(\dfrac{90^2}{15^2}\)
d) \(\dfrac{790^4}{79^4}\)
Ta có dựa vào dãy tỉ số bằng nhau
1)\(\dfrac{x}{-5}=\dfrac{y}{2}=\dfrac{x-y}{-5-2}=1\)
suy ra x=-5 , y=2
2) bạ tự làm nhé
3)=\(\dfrac{-1}{3^7}.3^7=-1\)
b)=\(\dfrac{1}{512}.512=1\)
c)=\(\dfrac{90^2}{15^2}=2^2.3^2=36\)
d)=\(\dfrac{790^4}{79^4}=10^4=10000\)
Tick em nha