\(3\sqrt{45}\) - \(7\sqrt[]{125}\) + \(\sqrt{500}\) + 16\(\sqrt{9-4\sqrt{5}}\)
tìm x biết
a)\(\frac{3\sqrt{x}-5}{2}-\frac{2\sqrt{x}-7}{3}+1=\sqrt{x}\)
b)\(\sqrt{9x^2+45}-\frac{1}{12}\sqrt{16x^2+80}+3\sqrt{\frac{x^2+5}{16}}-\frac{1}{4}\sqrt{\frac{25x^2+125}{9}}=9\)
Tìm x :
h/ \(\sqrt{x+5}-10=-4\)
i/ \(\sqrt{x-5}+2\sqrt{4x-20}-\frac{1}{3}\sqrt{9x-45}=12\)
j/ \(3\sqrt{2x}+\frac{1}{7}\sqrt{98x}-\sqrt{72x}+4=0\)
k/ \(\sqrt{4x^2-20}-\frac{1}{3}\sqrt{x^2-5}+\sqrt{\frac{9x^2-45}{16}}-\frac{1}{2}\sqrt{\frac{25x^2-125}{36}}=4\)
l/ \(\sqrt{4x+4}+\sqrt{9x+9}-\sqrt{x+1}=4\)
m/ \(\sqrt{16\left(x+1\right)}+\sqrt{4x+4}=16-\sqrt{x+1}+\sqrt{9x+9}\)
Giúp mk với nhé mn
h)
ĐKXĐ: $x\geq -5$
PT $\Leftrightarrow \sqrt{x+5}=6$
$\Rightarrow x+5=36\Rightarrow x=31$ (thỏa mãn)
i) ĐKXĐ: $x\geq 5$
PT \(\Leftrightarrow \sqrt{x-5}+4\sqrt{x-5}-\sqrt{x-5}=12\)
\(\Leftrightarrow 4\sqrt{x-5}=12\Leftrightarrow \sqrt{x-5}=3\Rightarrow x-5=9\Rightarrow x=14\) (thỏa mãn)
j)
ĐKXĐ: $x\geq 0$
PT $\Leftrightarrow 3\sqrt{2x}+\sqrt{2x}-6\sqrt{2x}+4=0$
$\Leftrightarrow -2\sqrt{2x}+4=0$
$\Leftrightarrow \sqrt{2x}=2$
$\Rightarrow x=2$ (thỏa mãn)
k) ĐK: $x^2\geq 5$
PT $\Leftrightarrow 2\sqrt{x^2-5}-\frac{1}{3}\sqrt{x^2-5}+\frac{3}{4}\sqrt{x^2-5}-\frac{5}{12}\sqrt{x^2-5}=4$
$\Leftrightarrow 2\sqrt{x^2-5}=4$
$\Leftrightarrow \sqrt{x^2-5}=2$
$\Rightarrow x^2-5=4$
$\Leftrightarrow x^2=9\Rightarrow x=\pm 3$ (đều thỏa mãn)
l) ĐKXĐ: $x\geq -1$
PT $\Leftrightarrow 2\sqrt{x+1}+3\sqrt{x+1}-\sqrt{x+1}=4$
$\Leftrightarrow 4\sqrt{x+1}=4$
$\Leftrightarrow \sqrt{x+1}=1$
$\Rightarrow x+1=1$
$\Rightarrow x=0$
m)
ĐKXĐ: $x\geq -1$
PT $\Leftrightarrow 4\sqrt{x+1}+2\sqrt{x+1}=16-\sqrt{x+1}+3\sqrt{x+1}$
$\Leftrightarrow 6\sqrt{x+1}=16+2\sqrt{x+1}$
$\Leftrightarrow 4\sqrt{x+1}=16$
$\Leftrightarrow \sqrt{x+1}=4$
$\Rightarrow x=15$ (thỏa mãn)
Thực hiện phép tính
a, \(\sqrt{12-3\sqrt{7}-\sqrt{12+3\sqrt{7}}}\)
b, \(\sqrt{125}-4\sqrt{45}+3\sqrt{20}-\sqrt{80}\)
c, \(2\sqrt{\frac{27}{4}}-\sqrt{\frac{48}{9}}-\frac{2}{5}\sqrt{\frac{75}{16}}\)
d , \(\left(\sqrt{99}-\sqrt{18}-\sqrt{11}\right)\sqrt{11}+3\sqrt{22}\)
a/ Đề sai
b/ \(\sqrt{125}-4\sqrt{45}+3\sqrt{2}-\sqrt{80}=5\sqrt{5}-12\sqrt{5}+3\sqrt{2}-4\sqrt{5}\)
\(=-11\sqrt{5}+3\sqrt{2}\)
c/ \(2\sqrt{\frac{27}{4}}-\sqrt{\frac{48}{9}}-\frac{2}{5}\sqrt{\frac{75}{16}}=2.\frac{3\sqrt{3}}{2}-\frac{4\sqrt{3}}{3}-\frac{2}{5}.\frac{5\sqrt{3}}{4}\)
\(=3\sqrt{3}-\frac{4\sqrt{3}}{3}-\frac{\sqrt{3}}{2}=\sqrt{3}\left(3-\frac{4}{3}-\frac{1}{2}\right)=\frac{7\sqrt{3}}{6}\)
d/ \(\left(\sqrt{99}-\sqrt{18}-\sqrt{11}\right)\cdot\sqrt{11}+3\sqrt{22}=33-3\sqrt{22}-11+3\sqrt{22}=22\)
a) \(\sqrt{4x^2-9}=2\sqrt{x+3}\)
b) \(\sqrt{4x+20}+3\sqrt{\dfrac{x-5}{9}}-\dfrac{1}{3}\sqrt{9x-45}=4\)
c) \(\dfrac{2}{3}\sqrt{9x-9}-\dfrac{1}{4}\sqrt{16x-16}+27\sqrt{\dfrac{x-1}{81}}=4\)
d)\(5\sqrt{\dfrac{9x-27}{25}}-7\sqrt{\dfrac{4x-12}{9}}-7\sqrt{x^2-9}+18\sqrt{\dfrac{9x^2-81}{81}}=0\)
\(a) \sqrt{4x^2− 9} = 2\sqrt{x + 3}\)
\(ĐK:x\ge\dfrac{3}{2}\)
\(pt\Leftrightarrow4x^2-9=4\left(x+3\right)\)
\(\Leftrightarrow4x^2-9=4x+12\)
\(\Leftrightarrow4x^2-4x-21=0\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1-\sqrt{22}}{2}\left(l\right)\\x=\dfrac{1+\sqrt{22}}{2}\left(tm\right)\end{matrix}\right.\)
\(b)\sqrt{4x-20}+3.\sqrt{\dfrac{x-5}{9}}-\dfrac{1}{3}\sqrt{9x-45}=4\)
\(ĐK:x\ge5\)
\(pt\Leftrightarrow2\sqrt{x-5}+\sqrt{x-5}-\sqrt{x-5}=4\)
\(\Leftrightarrow2\sqrt{x-5}=4\Leftrightarrow\sqrt{x-5}=2\)
\(\Leftrightarrow x-5=4\Leftrightarrow x=9\left(tm\right)\)
\(c)\dfrac{2}{3}\sqrt{9x-9}-\dfrac{1}{4}\sqrt{16x-16}+27.\sqrt{\dfrac{x-1}{81}}=4\)
ĐK:x>=1
\(pt\Leftrightarrow2\sqrt{x-1}-\sqrt{x-1}+3\sqrt{x-1}=4\)
\(\Leftrightarrow4\sqrt{x-1}=4\Leftrightarrow\sqrt{x-1}=1\)
\(\Leftrightarrow x-1=1\Leftrightarrow x=2\left(tm\right)\)
\(d)5\sqrt{\dfrac{9x-27}{25}}-7\sqrt{\dfrac{4x-12}{9}}-7\sqrt{x^2-9}+18\sqrt{\dfrac{9x^2-81}{81}}=0\)
\(ĐK:x\ge3\)
\(pt\Leftrightarrow3\sqrt{x-3}-\dfrac{14}{3}\sqrt{x-3}-7\sqrt{x^2-9}+6\sqrt{x^2-9}=0\)
\(\Leftrightarrow-\dfrac{5}{3}\sqrt{x-3}-\sqrt{x^2-9}=0\Leftrightarrow\dfrac{5}{3}\sqrt{x-3}+\sqrt{x^2-9}=0\)
\(\Leftrightarrow(\dfrac{5}{3}+\sqrt{x+3})\sqrt{x-3}=0\)
\(\Leftrightarrow\sqrt{x-3}=0\) (vì \(\dfrac{5}{3}+\sqrt{x+3}>0\))
\(\Leftrightarrow x-3=0\Leftrightarrow x=3\left(nhận\right)\)
Rút gọn biểu thức
I=(2\(\sqrt{3}\)-5\(\sqrt{27}\)+4\(\sqrt{12}\)):\(\sqrt{3}\)
K=\(\sqrt{125}\)-4\(\sqrt{45}\)+3\(\sqrt{20}\)-\(\sqrt{80}\)
L=2\(\sqrt{9}\)+\(\sqrt{25}\)-5\(\sqrt{4}\)
N=2\(\sqrt{32}\)-5\(\sqrt{27}\)-4\(\sqrt{8}\)+3\(\sqrt{75}\)
O=2\(\sqrt{3.5^2}\)-3\(\sqrt{3.2^2}\)+\(\sqrt{3.3^2}\)
\(I=\left(2\sqrt{3}-5\sqrt{27}+4\sqrt{12}\right):\sqrt{3}\)
\(=\left(2\sqrt{3}-5\sqrt{3}.\sqrt{3^2}+2\sqrt{2^2}.\sqrt{3}\right):\sqrt{3}\)
\(=\left(2\sqrt{3}-15\sqrt{3}+8\sqrt{3}\right):\sqrt{3}\)
\(=-5\sqrt{3}.\dfrac{1}{\sqrt{3}}\)
\(=-5\)
\(K=\sqrt{125}-4\sqrt{45}+3\sqrt{20}-\sqrt{80}\)
\(=\sqrt{5^2.5}-4\sqrt{3^2.5}+3\sqrt{2^2.5}-\sqrt{4^2.5}\)
\(=5\sqrt{5}-12\sqrt{5}+6\sqrt{5}-4\sqrt{5}\)
\(=\sqrt{5}.\left(5-12+6-4\right)\)
\(=-5\sqrt{5}\)
\(L=2\sqrt{9}+\sqrt{25}-5\sqrt{4}\)
\(=2\sqrt{3^2}+\sqrt{5^2}-5\sqrt{2^2}\)
\(=2.3+5-5.2\)
\(=1\)
\(N=2\sqrt{32}-5\sqrt{27}-4\sqrt{8}+3\sqrt{75}\)
\(=2.4\sqrt{2}-5.3\sqrt{3}-4.2\sqrt{2}+3.5\sqrt{3}\)
\(=8\sqrt{2}-8\sqrt{2}-15\sqrt{3}+15\sqrt{3}\)
\(=0\)
\(O=2\sqrt{3.5^2}-3\sqrt{3.2^2}+\sqrt{3.3^2}\)
\(=2.5\sqrt{3}-3.2\sqrt{3}+3\sqrt{3}\)
\(=10\sqrt{3}-6\sqrt{3}+3\sqrt{3}\)
\(=7\sqrt{3}\)
\(L=\dfrac{2\sqrt{3}-15\sqrt{3}+8\sqrt{3}}{\sqrt{3}}=2-15+8=-5\)
\(K=5\sqrt{5}-12\sqrt{5}+6\sqrt{5}-4\sqrt{5}=-5\sqrt{5}\)
L=2*3+5-5*2=5-4=1
N=8căn 2-8căn2-15căn3+15căn 3=0
O=10căn 3-6căn3+3căn3=7căn 3
a) \(\sqrt{\frac{125}{3^5.4^3}}\)
b) \((\sqrt{45}-\sqrt{20}+\sqrt{5}):\sqrt{6}\)
c) \((\frac{\sqrt{1}}{7}-\frac{\sqrt{16}}{7}+\sqrt{7}):\sqrt{7}\)
d) \(\sqrt{32.200}\)
e)\(\sqrt{\frac{9}{16}:\frac{25}{36}}\)
Mn giúp mình với ạ!
a)\(=\sqrt{\frac{5.5^2}{3^5.2^6}}=\sqrt{\frac{5}{3^5}}.\frac{5}{2^3}=\frac{5\sqrt{5.3^5}}{3^5.2^3}\)
b)\(=\left(3\sqrt{5}-2\sqrt{5}+\sqrt{5}\right):\sqrt{6}\)
\(=\frac{2\sqrt{5}}{\sqrt{6}}\)\(=\frac{\sqrt{30}}{3}\)
Câu c ttự
d)\(=\sqrt{2^8.5^2}=2^4.5=80\)
e)\(=\sqrt{\left(\frac{3}{4}\right)^2:\left(\frac{5}{6}\right)^2}=\frac{9}{10}\)
\(\frac{1}{4}\sqrt{\frac{25x^2+125}{9}}\)Tìm x biết
a) \(\frac{3\sqrt{x}-5}{2}\)- \(\frac{2\sqrt{x}-7}{3}\)+1=20
b) \(\sqrt{9x^2+45}\) - \(\frac{1}{12}\sqrt{16x^2+80}\) +\(3\sqrt{\frac{x^2+5}{16}}\)
-\(\frac{1}{4}\sqrt{\frac{25x^2+125}{9}}\)=9
a, \(\sqrt{200}-\sqrt{32}+\sqrt{72}\)
b, \(4\sqrt{20}-3\sqrt{125}+5\sqrt{45}-15\sqrt{\dfrac{1}{5}}\)
c, \(\left(2\sqrt{8}+3\sqrt{5}-7\sqrt{2}\right)\left(72-5\sqrt{20}-2\sqrt{2}\right)\)
a) \(\sqrt{200}-\sqrt{32}+\sqrt{72}\)
\(=\sqrt{10^2\cdot2}-\sqrt{4^2\cdot2}+\sqrt{6^2\cdot2}\)
\(=10\sqrt{2}-4\sqrt{2}+6\sqrt{2}\)
\(=\left(10-4+6\right)\sqrt{2}\)
\(=12\sqrt{2}\)
b) \(4\sqrt{20}-3\sqrt{125}+5\sqrt{45}-15\sqrt{\dfrac{1}{5}}\)
\(=4\cdot2\sqrt{5}-3\cdot5\sqrt{5}+5\cdot3\sqrt{5}-3\sqrt{5}\)
\(=8\sqrt{5}-15\sqrt{5}+15\sqrt{5}-3\sqrt{5}\)
\(=\left(8-15+15-3\right)\sqrt{5}\)
\(=5\sqrt{5}\)
c) \(\left(2\sqrt{8}+3\sqrt{5}-7\sqrt{2}\right)\left(72-5\sqrt{20}-2\sqrt{2}\right)\)
\(=\left(2\cdot2\sqrt{2}+3\sqrt{5}-7\sqrt{2}\right)\left(72-5\cdot2\sqrt{5}-2\sqrt{2}\right)\)
\(=\left(3\sqrt{5}-3\sqrt{2}\right)\left(72-10\sqrt{5}-2\sqrt{2}\right)\)
B 4. Tính giá trị của các biểu thức:
a) 2\(\sqrt{5}\) -\(\sqrt{20}\)+3\(\sqrt{45}\)-3\(\sqrt{500}\) b) 2\(\sqrt{7}\)-3\(\sqrt{28}\)-\(\dfrac{1}{4}\)\(\sqrt{63}\)-2\(\sqrt{252}\)
c) 2\(\sqrt{3}\) -\(\sqrt{12}\)+3\(\sqrt{108}\) -3\(\sqrt{75}\) d)2\(\sqrt{6}\) -3\(\sqrt{24}\) +\(\dfrac{1}{5}\) \(\sqrt{150}\) -5\(\sqrt{3600}\)
a: \(=2\sqrt{5}-2\sqrt{5}+9\sqrt{5}-30\sqrt{5}=-21\sqrt{5}\)
b: \(=2\sqrt{7}-6\sqrt{7}-\dfrac{3}{4}\sqrt{7}-8\sqrt{7}=-\dfrac{51}{4}\sqrt{7}\)