phan tich cac da thuc sau thanh nhan tu
x^2-x-12
x^2+8x+15
x^3-x^2+x+3
x^8+3x^4+4
x^6-x^4-2x^3+2x^2
phan tich cac da thuc sau thanh nhan tu theo mau:
2x^3-x
5x^2(x-1)-15x(x-1)
3x^2y^2+12x^2y-15x-y^2
3x(x-2y)+6y(2y-x)
phan tich cac da thuc sau thanh nhan tu theo mau:
a)\(2x^3-x\)
\(=x\left(2x^2-1\right)\)
\(=x\left(\left(\sqrt{2}x\right)^2-1^2\right)\)\
\(=x\left(\sqrt{2}x-1\right)\left(\sqrt{2}x+1\right)\)
b)\(5x^2\left(x-1\right)-15x\left(x-1\right)\)
\(=\left(5x^2-15x\right)\left(x-1\right)\)
\(=5x\left(x-3\right)\left(x-1\right)\)
d)\(3x\left(x-2y\right)+6y\left(2y-x\right)\)
\(=3x\left(x-2y\right)-6y\left(x-2y\right)\)
\(=\left(3x-6y\right)\left(x-2y\right)\)
\(=3\left(x-2y\right)\left(x-2y\right)\)
\(=3\left(x-2y\right)^2\)
phan tich da thuc sau thanh nhan tu
a x^3-9x^2+15x+25
b x^3-4x^2-11x+30
c 2x^4+x^3-22x^2+15x-36
Phan tich da thuc sau thanh nhan tu ( giup minh voi cac ban oi :<< )
1/ x3 + 2x + x2
2/ 2x3 + 4x2 + 2x
3/ -3x3 - 5x2 + 8x
4/ x2 + 4x - 5
5/ 6x2 - 3x - 3
6/ 3x2 - 2x -5
7/ 3x2 - 2x -5
8/ x2 - 2x - 4y2 - 4y
9/ x3 + 2x2y + xy2 - 9x
10/ x2 - y2 + 6x +9
\(1.x^3+2x+x^2=x\left(x^2+x+2\right)\)
\(2.2x^3+4x^2+2x=2x\left(x^2+2x+1\right)=2x\left(x+1\right)^2\)
\(3.-3x^3-5x^2+8x=-3x^3+3x^2-8x^2+8x\)
\(=-3x^2\left(x-1\right)-8x\left(x-1\right)=\left(3x^2+8x\right)\left(1-x\right)\)
\(=x\left(3x+8\right)\left(1-x\right)\)
\(4.x^2+4x-5=x^2-x+5x-5=\left(x-1\right)\left(x+5\right)\)
\(5.6x^2-3x-3=6x^2-6x+3x-3=3\left(x-1\right)\left(2x+1\right)\)
\(6.3x^2-2x-5=3x^2+3x-5x-5=\left(x+1\right)\left(3x-5\right)\)
\(8.x^2-2x-4y^2-4y=\left(x-2y\right)\left(x+2y\right)-2\left(x+2y\right)\)\(=\left(x+2y\right)\left(x-y-2\right)\)
\(9.x^3+2x^2y+xy^2-9x=x\left(x^2+2xy+y^2-9\right)\)
\(=x\left(x+y-3\right)\left(x+y+3\right)\)
\(10.x^2-y^2+6x+9=\left(x+3-y\right)\left(x+3+y\right)\)
Phan tich da thuc thanh nhan tu
3x2 -11x+ 68x2+10x-34x2+8x-5x4+4y4(x2-2x)(x2-2x-1)-6phan tich da thuc thanh nhan tu :x^5+2x^4+3x^3+2x^2+2x+1
x^5+2x^4+2x^3+2x^2+2x+1
=(x^5+x^4)+(x^4+x^3)+(x^3+x^2)+(x^2+x)+(x+1)
=x^4(x+1)+x^3(x+1)+x^2(x+1)+x(x+1)+(x+1)
=(x+1)(x^4+x^3+x^2+x+1)
Cach phan tich da thuc thanh nhan tu
a)X^3+2X^2+2X+1
b)X^3-4X^2+12X-27
c)a^6-a^4+2a^3+2a^2
d)x^4+2x^3+2x^2+2x+1
e)x^5+x^4+x^3+x^2+x+1
a)
=x3+x2+x2+x+x+1
=x2(x+1)+x(x+1)+(x+1)
=(x+1)(x2+x+1)
b)
=x3-3x2-x2+3x+9x-27
=x2(x-3)-x(x-3)+9(x-3)
=(x-3)(x2-x+9)
a)
=x3+x2+x2+x+x+1
=x2(x+1)+x(x+1)+(x+1)
=(x+1)(x2+x+1)
b)
=x3-3x2-x2+3x+9x-27
=x2(x-3)-x(x-3)+9(x-3)
=(x-3)(x2-x+9)
d)x^4+2x^3+2x^2+2x+1(no)
e)x^5+x^4+x^3+x^2+x+1 ( no)
câu 1 |: phan tich da thuc thanh nhan tử x^3 +3x^2-3x-1
\câu 2 làm tính chia
a,( x^4 -2x^3 +2x-1 ) : (x^2-1)
\b, (x^6 -2x^5+2x^4+6x^3-4x^2) : (6x^2)
\cau3 rút gọn phân thức \(\frac{3x^2+6x^2+12}{x^3-8}\)
\mọi người làm gấp với a! lam dc cau nào nhờ giai hộ
câu 1:
x3-1+3x2-3x =(x-1)(x^2+x+1)+3x(x-1)=(x-1)(x^2+x+1+3x)=(x-1)(x^2+4x=1)
Câu 2 :
a) \(\left(x^4-2x^3+2x-1\right):\left(x^2-1\right)\)
\(=\left(x^4-x^2-2x^3+2x+x^2-1\right):\left(x^2-1\right)\)
\(=\left[x^2\left(x^2-1\right)-2x\left(x^2-1\right)+\left(x^2-1\right)\right]:\left(x^2-1\right)\)
\(=\left(x^2-1\right)\left(x^2-2x+1\right):\left(x^2-1\right)\)
\(=x^2-2x+1\)
b) \(\left(x^6-2x^5+2x^4+6x^3-4x^2\right):6x^2\)
\(=\frac{1}{6}x^4-\frac{1}{3}x^3+\frac{1}{3}x^2+x-\frac{2}{3}\)
Câu 3 :
Sửa đề :
\(\frac{3x^2+6x+12}{x^3-8}=\frac{3\left(x^2+2x+4\right)}{\left(x-2\right)\left(x^2+2x+4\right)}=\frac{3}{x-2}\)
phan tich da thuc thanh nhan tu
a)x^4+x^2y^2+y^4
b)x^3+3x-4
c)x^2+9x+8
d)x^2+x-42
e)y^2-13y+12
f)x^2-x-30
g)2x^2+xy-y^2
h)y^2-y-12
i)x^2+x-2
j)x^3+3x^2-2
k)x^3-6x^2+16
l)x^3+3x+4
m)x^4+6x^3-12x^2-8x
a. x4 + x2y2 + y4 = (x4 + 2x2y2 + y4) - x2y2
= (x2 + y2)2 – (xy)2
= [(x2 + y2) + xy] [(x2 + y2) – xy]
= (x2 + xy + y2)(x2 –xy + y2)
h, \(y^2-y-12\)
\(=y^2-4x+3y-12\)
\(=\left(y-4\right)\left(y+3\right)\)
\(i,x^2+x-2\)
\(=x^2+2x-x-2\)
\(=\left(x+2\right)\left(x-1\right)\)
\(j,x^3+3x^2-2\)
\(=x^3+2x^2+x^2-2x+2x-2\)
\(=x^2\left(x+1\right)+2x\left(x+1\right)-2\left(x+1\right)\)
\(=\left(x+1\right)\left(x^2+2x-2\right)\)
phan tich da thuc thanh nhan tu
A=x^6-2x^5-4x^4+6x^3+4x^2-2x-1