Tìm x: \(\left(25-x\right)+\left(29-x\right)+...+\left(101-x\right)=108\)
c. \(\dfrac{x-4}{5}+\dfrac{3x-2}{10}-x=\dfrac{2x-5}{3}-\dfrac{7x+2}{6}\)
d. \(\left(x+2\right)^3-\left(x-2\right)^3=12x\left(x-1\right)-8\)
e. \(\left(x+5\right)\left(x+2\right)-3\left(4x-3\right)=\left(5-x\right)^2\)
f. \(\dfrac{x-5}{100}+\dfrac{x-4}{101}+\dfrac{x-3}{102}=\dfrac{x-100}{5}+\dfrac{x-101}{4}+\dfrac{x-102}{3}\)
g. \(\dfrac{29-x}{21}+\dfrac{27-x}{23}+\dfrac{25-x}{25}+\dfrac{23-x}{27}+\dfrac{21-x}{29}=5\)
d: \(\Leftrightarrow x^3+6x^2+12x+8-x^3+6x^2-12x+8=12x^2-12x-8\)
\(\Leftrightarrow12x^2+16=12x^2-12x-8\)
=>-12x=24
hay x=-2
e: \(\left(x+5\right)\left(x+2\right)-3\left(4x-3\right)=\left(x-5\right)^2\)
\(\Leftrightarrow x^2+7x+10-12x+9=x^2-10x+25\)
=>-5x+19=-10x+25
=>5x=6
hay x=6/5
f: \(\dfrac{x-5}{100}+\dfrac{x-4}{101}+\dfrac{x-3}{102}=\dfrac{x-100}{5}+\dfrac{x-101}{4}+\dfrac{x-102}{3}\)
=>x-105=0
hay x=105
1) giải pt :
a) \(\dfrac{x-5}{100}+\dfrac{x-4}{101}+\dfrac{x-3}{102}=\dfrac{x-100}{5}+\dfrac{x-101}{4}+\dfrac{x-102}{3}\)
b) \(\dfrac{29-x}{21}+\dfrac{27-x}{23}+\dfrac{25-x}{25}+\dfrac{23-x}{27}+\dfrac{21-x}{29}=-5\)
2) giải pt :
a) \(\left(5x+1\right)^2=\left(3x-2\right)^2\)
b) \(\left(x+2\right)^3=\left(2x+1\right)^3\)
c) \(\left(x+3\right)^4+\left(x+5\right)^4=2\)
d) \(x^4-3x^3+4x^2-3x+1=0\)
1)
\(\dfrac{x-5}{100}+\dfrac{x-4}{101}+\dfrac{x-3}{102}=\dfrac{x-100}{5}+\dfrac{x-101}{4}+\dfrac{x-102}{3}\)
\(\Leftrightarrow\dfrac{x-5}{100}+1+\dfrac{x-4}{101}+1+\dfrac{x-3}{102}+1=\dfrac{x-100}{5}+1+\dfrac{x-101}{4}+1+\dfrac{x-102}{3}+1\)
\(\Leftrightarrow\dfrac{x-105}{100}+\dfrac{x-105}{101}+\dfrac{x-105}{102}=\dfrac{x-105}{5}+\dfrac{x-105}{4}+\dfrac{x-105}{3}+\dfrac{x-105}{2}\)
\(\Leftrightarrow\dfrac{x-105}{100}+\dfrac{x-105}{101}+\dfrac{x-105}{102}-\dfrac{x-105}{5}-\dfrac{x-105}{4}-\dfrac{x-105}{3}-\dfrac{x-105}{2}=0\)
\(\Leftrightarrow\left(x-105\right)\left(\dfrac{1}{100}+\dfrac{1}{101}+\dfrac{1}{102}-\dfrac{1}{5}-\dfrac{1}{4}-\dfrac{1}{3}-\dfrac{1}{2}\right)=0\)\(\Leftrightarrow105-x=0\)
\(\Leftrightarrow x=105\)
b)
\(\dfrac{29-x}{21}+\dfrac{27-x}{23}+\dfrac{25-x}{25}+\dfrac{23-x}{27}+\dfrac{21-x}{29}=0\)
\(\Leftrightarrow\dfrac{29-x}{21}+1+\dfrac{27-x}{23}+1+\dfrac{25-x}{25}+1+\dfrac{23-x}{27}+1+\dfrac{21-x}{29}+1=0\)
\(\Leftrightarrow\dfrac{50-x}{21}+\dfrac{50-x}{23}+\dfrac{50-x}{25}+\dfrac{20-x}{27}+\dfrac{50-x}{29}=0\)
\(\Leftrightarrow\left(50-x\right)\left(\dfrac{1}{21}+\dfrac{1}{23}+\dfrac{1}{25}+\dfrac{1}{27}+\dfrac{1}{29}\right)=0\)
\(\Leftrightarrow50-x=0\)
\(\Leftrightarrow x=50\)
2)
\(\left(5x+1\right)^2=\left(3x-2\right)^2\)
\(\Leftrightarrow\left|5x+1\right|=\left|3x-2\right|\)
\(\Leftrightarrow\left[{}\begin{matrix}5x+1=3x-2\\5x+1=-3x+2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-3}{2}\\x=\dfrac{1}{8}\end{matrix}\right.\)
b) \(\left(x+2\right)^3=\left(2x+1\right)^3\)
\(\Leftrightarrow x^3+6x^2+12x+8=8x^3+12x^2+6x+1\)
\(\Leftrightarrow-7x^3-6x^2+6x+7=0\)
\(\Leftrightarrow-7x^3+7x^2-13x^2+13x-7x+7=0\)
\(\Leftrightarrow-7x^2\left(x-1\right)-13x\left(x-1\right)-7\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(-7x^2-13x-7\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\-7x^2-13x-7=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\-7\left(x^2+\dfrac{13}{7}x+1\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\-7\left(x+\dfrac{13}{14}\right)^2-\dfrac{169}{196}=0\left(l\right)\end{matrix}\right.\)
\(\Leftrightarrow x=1\)
c. \(\left(x+3\right)^4+\left(x+5\right)^4=2\)
Đặt: \(y=x+4\), ta có:
\(\left(y-1\right)^4+\left(y+1\right)^4=2\)
\(\Leftrightarrow y^4-4y^3+6y^2-4y+1+y^4+4y^3+6y^2+4y+1=2\)
\(\Leftrightarrow2y^4+12y^2=0\)
\(\Leftrightarrow2y^2\left(y^2+6\right)=0\)
\(\Leftrightarrow y=0\)
\(\Leftrightarrow x=-4\)
d) \(x^4-3x^3+4x^2-3x+1=0\)
\(\Leftrightarrow x^4-x^3-2x^3+2x^2+2x^2-2x-x+1=0\)
\(\Leftrightarrow x^3\left(x-1\right)-2x^2\left(x-1\right)+2x\left(x-1\right)-\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^3-2x^2+2x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^3-x^2-x^2+x+x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left[x^2\left(x-1\right)-x\left(x-1\right)+\left(x-1\right)\right]=0\)
\(\Leftrightarrow\left(x-1\right)^2\left(x^2-x+1\right)=0\)
\(\Leftrightarrow x=1\)
Câu 1: Tìm x biết:
a)\(\left|x+\frac{1}{101}\right|+\left|x+\frac{2}{101}\right|+\left|x+\frac{3}{101}\right|+...+\left|x+\frac{100}{101}\right|=101x\)
b)\(\left|x+\frac{1}{1.3}\right|+\left|x+\frac{1}{3.5}\right|+\left|x+\frac{1}{5.7}\right|+...+\left|x+\frac{1}{97.99}\right|=50x\)
c)\(\left|x+\frac{1}{1.2}\right|+\left|x+\frac{1}{2.3}\right|+\left|x+\frac{1}{3.4}\right|+...+\left|x+\frac{1}{99.100}\right|=100x\)
d)\(\left|x+\frac{1}{1.5}\right|+\left|x+\frac{1}{5.9}\right|+\left|x+\frac{1}{9.13}\right|+...+\left|x+\frac{1}{397.401}\right|=101x\)
Nhận xét :
\(VT\ge0\Rightarrow VP\ge0\Rightarrow101x\ge0\Rightarrow x\ge0\)
Vì \(x\ge0\) nên pt a) tương đương với : \(100x+\frac{1+2+3+...+100}{101}=101x\)
\(\Leftrightarrow x=\frac{100.101}{2.101}=50\)
b)
Tương tự câu a) , phương trình tương đương với :
\(49x+\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{...1}{97.99}=50x\)
\(\Rightarrow x=\frac{97}{195}\)
c)
Tương tự câu a) , phương trình tương đương với :
\(99x+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}=100x\)
\(\Rightarrow x=\frac{99}{100}\)
Tìm \(x\in Q\) sao cho:
\(\left|x+\frac{1}{101}\right|+\left|x+\frac{2}{101}\right|+\left|x+\frac{3}{101}\right|+...+\left|x+\frac{100}{101}\right|=101x\)
Vì \(\left|x+\frac{1}{101}\right|+\left|x+\frac{1}{102}\right|+....+\left|x+\frac{100}{101}\right|>0\)
\(\Rightarrow101x>0\)
\(\Rightarrow x>0\)
\(\Rightarrow\left(x+\frac{1}{101}\right)+.....+\left(x+\frac{100}{101}\right)=101x\)
\(\Rightarrow100x+\left(\frac{1}{101}+\frac{2}{101}+....+\frac{100}{101}\right)=101x\)
\(\Rightarrow x=\frac{\left(100+1\right)100:2}{101}\)
\(\Rightarrow x=\frac{50.101}{101}\)
\(\Rightarrow x=50\)
Vậy x = 50
Do \(\left|x+\frac{1}{101}\right|\ge0;\left|x+\frac{2}{101}\right|\ge0;\left|x+\frac{3}{101}\right|\ge0;...;\left|x+\frac{100}{101}\right|\ge0\)
=> \(101x\ge0\)
=> \(x\ge0\)
=> \(\left(x+\frac{1}{101}\right)+\left(x+\frac{2}{101}\right)+\left(x+\frac{3}{101}\right)+...+\left(x+\frac{100}{101}\right)=101x\)
=> \(\left(x+x+x+...+x\right)+\left(\frac{1}{101}+\frac{2}{101}+\frac{3}{101}+...+\frac{100}{101}\right)=101x\)
100 số x 100 phân số
=> \(100x+\frac{\left(1+100\right).100:2}{101}=101x\)
=> \(\frac{101.50}{101}=101x-100x\)
=> \(x=50\)
tìm x biết: \(\left|x+\frac{1}{101}\right|+\left|x+\frac{2}{101}\right|+....+\left|x+\frac{100}{101}\right|=101x\)
Vì \(\left|x+\frac{1}{101}\right|\ge0;\left|x+\frac{2}{101}\right|\ge0;...;\left|x+\frac{100}{101}\right|\ge0\forall x\)
\(\Rightarrow\left|x+\frac{1}{101}\right|+\left|x+\frac{2}{101}\right|+...+\left|x+\frac{100}{101}\right|\ge0\forall x\)
\(\Rightarrow101x\ge0\)
\(\Rightarrow x\ge0\)
Từ điều kiện trên ta có :
\(x+\frac{1}{101}+x+\frac{2}{101}+...+x+\frac{100}{101}=101x\)
\(100x+\frac{1+2+...+100}{101}=101x\)
\(101x-100x=\frac{5050}{101}\)
\(x=50\)
Vậy x = 50
\(\left|x+\frac{1}{101}\right|+\left|x+\frac{2}{101}\right|+....+\left|x+\frac{100}{101}\right|=101x\)
\(KĐ:101x\ge0\Rightarrow x\ge0\)
\(\Rightarrow\left|x+\frac{1}{101}\right|+\left|x+\frac{2}{101}\right|+...+\left|x+\frac{100}{101}\right|=101x\)
\(x+\frac{1}{101}+x+\frac{2}{101}+....+x+\frac{100}{101}=101x\)
\(100x+\left(\frac{1}{101}+\frac{2}{101}+....+\frac{100}{101}\right)=101x\)
\(\Rightarrow101-100x=\frac{1+2+....+100}{101}\)
\(x=\frac{\left(1+100\right)\left(100-1+1\right):2}{101}\)
\(x=\frac{101.100:2}{101}\)
\(x=50\)
tìm x biết
\(\frac{\left(24-x\right)^2+\left(24-x\right)\left(x-25\right)+\left(x-25\right)^2}{\left(24-x\right)^2-\left(24-x\right)\left(x-25\right)+\left(x-25\right)^2}=\frac{19}{49}\)
Đặt \(a=24-x,b=x-25\)
Khi đó pt ban đầu trở thành :
\(\frac{a^2+ab+b^2}{a^2-ab+b^2}=\frac{19}{49}\)
\(\Leftrightarrow49\left(a^2+ab+b^2\right)=19\left(a^2-ab+b^2\right)\)
\(\Leftrightarrow30a^2+68ab+30b^2=0\)
\(\Leftrightarrow15a^2+34ab+15b^2=0\)
\(\Leftrightarrow\left(3a+5b\right)\left(5a+3b\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}3a=-5b\\5a=-3b\end{cases}}\)
Đến đây bạn thay vào là dễ rồi nhé ! Chúc bạn học tốt !
5. Tìm x biết:
a, \(\left|x+1\right|+\left|x+2\right|+\left|x+3\right|+...+\left|x+10\right|=11x+1\)
b, \(\left|x+\frac{1}{101}\right|+\left|x+\frac{2}{101}\right|+...+\left|x+\frac{100}{101}\right|=101x\)
\(\left|x+\dfrac{1}{101}\right|+\left|x+\dfrac{2}{101}\right|+\left|x+\dfrac{3}{101}\right|+...+\left|x+\dfrac{100}{101}\right|=101x\)
\(\left|x+\dfrac{1}{101}\right|+\left|x+\dfrac{2}{101}\right|+.....+\left|x+\dfrac{100}{101}\right|=101x\left(1\right)\)
VT(1) \(\ge0\) \(\Rightarrow VP\left(1\right)\ge0\Rightarrow101x\ge0\Rightarrow x\ge0\)
\(\Rightarrow\left|x+\dfrac{1}{101}\right|+\left|x+\dfrac{2}{101}\right|+...+\left|x+\dfrac{100}{101}\right|=100x+\dfrac{5050}{101}=101x\\ \Rightarrow x=50\)
Ta có: \(\left|x+\frac{1}{101}\right|\ge0\) \(\forall x\)
\(\left|x+\frac{2}{101}\right|\ge0\) \(\forall x\)
\(\left|x+\frac{3}{101}\right|\ge0\) \(\forall x\)
\(............\)
\(\left|x+\frac{100}{101}\right|\ge0\) ∀\(x\)
\(\Rightarrow\left|x+\frac{1}{101}\right|+\left|x+\frac{2}{101}\right|+\left|x+\frac{3}{101}\right|+...+\left|x+\frac{100}{101}\right|\ge0\) \(\forall x\)
\(\Leftrightarrow101x\ge0\)
\(\Leftrightarrow x\ge0\)
\(\Leftrightarrow\left(x+\frac{1}{101}\right)+\left(x+\frac{2}{101}\right)+\left(x+\frac{3}{101}\right)+...+\left(x+\frac{100}{101}\right)\)
\(\Leftrightarrow\left(x+x+x+...+x\right)+\left(\frac{1}{101}+\frac{2}{101}+\frac{3}{101}+...+\frac{100}{101}\right)=101x\)
100 hạng tử x 100 số hạng
\(\Leftrightarrow100x+\left(\frac{\left(100+1\right)\cdot100:2}{101}\right)=101x\)
\(\Leftrightarrow100x+\frac{101\cdot50}{101}=101x\)
\(\Leftrightarrow50=101x-100x\)
\(\Rightarrow x=50\)
\(\left|x+\frac{1}{101}\right|+\left|x+\frac{2}{101}\right|+\left|x+\frac{3}{101}\right|+....+\left|x+\frac{100}{101}\right|\)=101x
Tĩm X?
Ta có: \(\left|x+\frac{1}{101}\right|\ge0\); \(\left|x+\frac{2}{101}\right|\) \(\ge0\); ...; \(\left|x+\frac{100}{101}\right|\ge0\)
\(\Rightarrow101x\ge0\)
và \(\left|x+\frac{1}{101}\right|+\left|x+\frac{2}{101}\right|+...+\left|x+\frac{100}{101}\right|\ge0\)
\(\Rightarrow\left|x+\frac{1}{101}\right|=x+\frac{1}{101}\); \(\left|x+\frac{2}{101}\right|=x+\frac{2}{101}\); ...; \(\left|x+\frac{100}{101}\right|=x+\frac{100}{101}\)
Thay vào đề bài ta đc:
\(x+\frac{1}{101}+x+\frac{2}{101}+...+x+\frac{100}{101}=101x\)
\(\Rightarrow\left(x+x+...+x\right)+\left(\frac{1}{101}+\frac{2}{101}+...+\frac{100}{101}\right)=101x\)
\(\Rightarrow\) \(100x\) + \(\left(\frac{1+2+...+101}{101}\right)=101x\)
\(\Rightarrow100x+101=101x\)
\(\Rightarrow x=101\)
Vậy \(x=101.\)
\(\left|x+\frac{1}{101}\right|+\left|x+\frac{2}{101}\right|+\left|x+\frac{3}{101}\right|+....+\left|x+\frac{100}{101}\right|\)=101x (1)
điều kiện:101x\(\ge\) 0 \(\Rightarrow\) x\(\ge\) 0
từ (1) \(\Rightarrow\) \(x+\frac{1}{101}+x+\frac{2}{101}+...+x+\frac{100}{101}\)=101x
\(\Rightarrow\) 100x+(\(\frac{1}{101}+\frac{2}{101}+...+\frac{100}{101}\))=101x
\(\Rightarrow\) 100x+\(\frac{5050}{101}\)=101x
\(\Rightarrow\) \(\frac{5050}{101}\)=101x-100x
\(\Rightarrow\) x=50
k bt mk lm sai hay lm đúng nữa
nếu mk lm sai thì thôi nha!
\(!x+\frac{1}{101}!+!x+\frac{2}{101}!+...+!x+\frac{100}{101}!=101x\) (1)
VT tổng các số không âm => VT>=0 vậy \(VP\ge0\Rightarrow x\ge0\)
với x>=0 biểu thức trong GT tuyệt đối >0 => bỏ dấu trị tuyệt đối biểu thức không đối
do vậy ta có (1) \(\Leftrightarrow\left(x+\frac{1}{101}\right)+...+\left(x+\frac{100}{101}\right)=101x\)
\(\Leftrightarrow100.x+\left(\frac{1}{101}+...+\frac{100}{101}\right)=101x\)
\(\Leftrightarrow x=\frac{1}{101}+\frac{2}{101}+...+\frac{100}{101}=\frac{1}{101}\left(1+2+...+100\right)=\frac{1}{101}\left(\frac{100.101}{2}\right)=50\)
đáp số: x=50