Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Khiêm Nguyễn Gia
Xem chi tiết

\(f\left(x\right)=6x^3-7x^2-16x+m\)

Do \(f\left(x\right)\) chia hết \(2x-5\), theo định lý Bezout:

\(f\left(\dfrac{5}{2}\right)=0\Rightarrow6.\left(\dfrac{5}{2}\right)^3-7.\left(\dfrac{5}{2}\right)^2-16.\left(\dfrac{5}{2}\right)+m=0\)

\(\Rightarrow m=-10\)

Khi đó  \(f\left(x\right)=6x^3-7x^2-16x-10\)

Số dư phép chia cho \(3x-2\):

\(f\left(\dfrac{2}{3}\right)=6.\left(\dfrac{2}{3}\right)^3-7.\left(\dfrac{2}{3}\right)^2-16.\left(\dfrac{2}{3}\right)-10=-22\)

Nguyễn Diệp Anh
6 tháng 1 lúc 12:19

Do �(�) chia hết 2�−5, theo định lý Bezout:

�(52)=0⇒6.(52)3−7.(52)2−16.(52)+�=0

⇒�=−10

Khi đó  �(�)=6�3−7�2−16�−10

Số dư phép chia cho 3�−2:

�(23)=6.(23)3−7.(23)2−16.(23)−10=−22

Mai Trung Hải Phong
6 tháng 1 lúc 14:45

\(f\left(x\right)=6x^3-7x^2-16x+m\)

Do \(f\left(x\right)⋮2x-5\) , theo định lý Bezout:

\(f\left(\dfrac{5}{2}\right)=0\Rightarrow6\left(\dfrac{5}{2}\right)^3-7\left(\dfrac{5}{2}\right)^2-16\left(\dfrac{5}{2}\right)+m=0\)

\(\Rightarrow m=-10\)

Khi đó \(f\left(x\right)=6x^3-7x^2-16x-10\)

Số dư phép chia cho \(3x-2:\)

\(f\left(\dfrac{2}{3}\right)=6\left(\dfrac{2}{3}\right)^3-7\left(\dfrac{2}{3}\right)^2-16\left(\dfrac{2}{3}\right)-10=-22\)

Trương Nhật Minh
Xem chi tiết
Nguyễn Đức Trí
11 tháng 8 2023 lúc 8:44

Ta thấy 

\(f\left(x\right):g\left(x\right)\)

\(\Rightarrow\left(x^{100}+x^{99}+x^{98}+x^5+2020\right):\left(x^2-1\right)\)

\(=\left(x^{98}+x^{97}+2x^{96}+2x^{95}+...2x^4+3x^3+2x^2+3x+2\right)\) có số dư là \(R\left(x\right)=3x+2022\)

\(\Rightarrow R\left(2021\right)=3.2021+2022=8085\)

No ri do
Xem chi tiết
Ngô Hồng Thuận
Xem chi tiết
Nhat Lee Vo
15 tháng 9 2016 lúc 22:05

số dư là -1

Diệu Anh Hoàng
Xem chi tiết
Tĩnh╰︵╯
4 tháng 12 2018 lúc 19:04

x \(\varepsilon\) { 1 ; -4 }

Pham Van Hung
4 tháng 12 2018 lúc 19:36

\(f\left(x\right)=\left(x^4+x\right)+\left(3x^3+3\right)+x^2-5x+4=x\left(x^3+1\right)+3\left(x^3+1\right)+x^2-5x+4\)

Để dư bằng 0 thì \(x^2-5x+4=0\)

\(\Rightarrow x\left(x-4\right)-\left(x-4\right)=0\)

\(\Rightarrow\left(x-4\right)\left(x-1\right)=0\Rightarrow\orbr{\begin{cases}x=4\\x=1\end{cases}}\)

Hoàng Diệu Anh
Xem chi tiết
Cẩm Mịch
4 tháng 12 2018 lúc 19:05

Gọi R là số dư của phép chia f(x) cho g(x)

Đặt phép chia như bình thường, ta được:

\(f\left(x\right):g\left(x\right)=x+3\)\(x^2-5x+4\)

Để phép chia trên dư 0 thì:

\(x^2-5x+4=0\)

\(\Rightarrow x^2-x-4x+4=0\)

\(\Rightarrow x\left(x-1\right)-4\left(x-1\right)=0\)

\(\Rightarrow\left(x-1\right)\left(x-4\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x-1=0\\x-4=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=1\\x=4\end{matrix}\right.\) thì dư của phép chia f(x) : g(x) = 0

Yến Chử
Xem chi tiết

em chưa cho đa thức f(x) và g(x) nà

Nguyễn Lê Phước Thịnh
29 tháng 3 2023 lúc 22:57

a: \(\dfrac{f\left(x\right)}{g\left(x\right)}\)

\(=\dfrac{x^4-9x^3+21x^2+ax+b}{x^2-x-1}\)

\(=\dfrac{x^4-x^3-x^2-8x^3+8x^2+8x+14x^2-14x-14+\left(a+6\right)x+b+14}{x^2-x-1}\)

\(=x^2-8x+14+\dfrac{\left(a+6\right)x+b+14}{x^2-x-1}\)

Để f(x) chia hết cho g(x) thì a+6=0 và b+14=0

=>a=-6 và b=-14

b: \(\dfrac{f\left(x\right)}{g\left(x\right)}=\dfrac{x^4-x^3+5x^2+x^2-x+5+a-5}{x^2-x+5}\)

\(=x^2+1+\dfrac{a-5}{x^2-x+5}\)

Để f(x) chia hết g(x) thì a-5=0

=>a=5

 

 

Nguyễn Võ Văn Hùng
Xem chi tiết
Xuan Thuc
20 tháng 12 2016 lúc 11:05

1

Nguyễn Tấn Tài
17 tháng 1 2017 lúc 17:48

Giả sử f(x)=(x+1)*q(x)+r (vì x+1 có bậc 1 nên dư là số r)

Thay x=-1 ta được: f(-1)=0*q(x)+r= r =(-1)^2017+(-1)^2016+1=1

Vậy dư trong phép chia \(x^{2017}+x^{2016}+1\) cho x+1 là 1

Chiêu Đoan Phạm
26 tháng 12 2016 lúc 20:37

1

Agami Raito
Xem chi tiết
Nguyễn Việt Lâm
21 tháng 9 2019 lúc 20:07