Tìm kết quả sau: 4 + 22 + 23 + ....... + 2n = 22023
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
A = 2 + 22 + 23 + ... +22023 + 22024 CHỨNG TỎ A) A⋮ 2 B) A ⋮ 3
a) \(A=2\left(1+2+2^2+...+2^{2022}+2^{2023}\right)⋮2\left(đpcm\right)\)
b) \(A=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{2023}\left(1+2\right)\)
\(=2.3+2^3.3+...+2^{2023}.3\)
\(=3\left(2+2^3+...+2^{2023}\right)⋮3\left(đpcm\right)\)
A) A=2+22+23+...+22023+22024
A=2(1+2+22+...+22022+22023)⋮2
B) A=2+22+23+...+22023+22024
A=(2+22)+...+(22023+22024)
A=2(1+2)+...+22023(1+2)
A=2.3+...+22023.3
A=3(2+...+22023)⋮3
cho a = 1 + 2 + 22 + 23 +... + 22023 a chứng tỏ
A) bằng 22024 - 1
b) Chứng minh a⋮3
a: \(A=1+2+2^2+...+2^{2023}\)
=>\(2A=2+2^2+2^3+...+2^{2024}\)
=>\(2A-A=2^{2024}+2^{2023}+...+2^2+2-2^{2023}-2^{2022}-...-2^2-2-1\)
=>\(A=2^{2024}-1\)
b: \(A=\left(1+2\right)+2^2+2^3+...+2^{2023}\)
\(=3+2^2\left(1+2\right)+...+2^{2022}\left(1+2\right)\)
\(=3\left(1+2^2+...+2^{2022}\right)⋮3\)
so sánh
a) A = 20 + 21 + 22 + 23 + … + 22022 Và B = 22023 - 1.
b) A = 2021.2023 và B = 20222.
a) A = 2⁰ + 2¹ + 2² + 2³ + ... + 2²⁰²²
2A = 2 + 2² + 2³ + 2⁴ + ... + 2²⁰²³
A = 2A - A
= (2 + 2² + 2³ + 2⁴ + ... + 2²⁰²³) - (2⁰ + 2¹ + 2² + 2³ + ... + 2²⁰²²)
= 2²⁰²³ - 2⁰
= 2²⁰²³ - 1
Vậy A = B
b) A = 2021 . 2023
= (2022 - 1).(2022 + 1)
= 2022.(2022 + 1) - 2022 - 1
= 2022² + 2022 - 2022 - 1
= 2022² - 1 < 2022²
Vậy A < B
A=1/2+2/22+3/23+...+2022/22022+2023/22023 So sánh A với 2.Các bạn nào giỏi thì giải hộ mình với:)))cám ơn!
Ta có \(A=\dfrac{1}{2}+\dfrac{2}{2^2}+\dfrac{3}{2^3}+...+\dfrac{2022}{2^{2022}}+\dfrac{2023}{2^{2023}}\)
\(2A=1+\dfrac{2}{2}+\dfrac{3}{2^2}+...+\dfrac{2022}{2^{2021}}+\dfrac{2023}{2^{2022}}\)
\(2A-A=\left(1+\dfrac{2}{2}+\dfrac{3}{2^2}+...+\dfrac{2022}{2^{2021}}+\dfrac{2023}{2^{2022}}\right)-\left(\dfrac{1}{2}+\dfrac{2}{2^2}+\dfrac{3}{2^3}+...+\dfrac{2022}{2^{2022}}+\dfrac{2023}{2^{2023}}\right)\)\(A=1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2021}}+\dfrac{1}{2^{2022}}\) - \(\dfrac{2023}{2^{2023}}\)
Đặt B = \(1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2021}}+\dfrac{1}{2^{2022}}\)
2B = \(2+1+\dfrac{1}{2}+...+\dfrac{1}{2^{2020}}+\dfrac{1}{2^{2021}}\)
2B - B = \(\left(2+1+\dfrac{1}{2}+...+\dfrac{1}{2^{2020}}+\dfrac{1}{2^{2021}}\right)-\left(1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2021}}+\dfrac{1}{2^{2022}}\right)\)B = 2 - \(\dfrac{1}{2^{2022}}\)
Suy ra A = 2 - \(\dfrac{1}{2^{2022}}\) - \(\dfrac{2023}{2^{2023}}\) < 2
Vậy A < 2
\(A=\dfrac{1}{2}+\dfrac{2}{2^{2}}+\dfrac{3}{2^{3}}+...+\dfrac{2022}{2^{2022}}+\dfrac{2023}{2^{2023}}\)
\(2A=1+\dfrac22+\dfrac3{2^2}\ +\,.\!.\!.+\ \dfrac{2022}{2^{2021}}+\dfrac{2023}{2^{2022}}\\2A-A=\left(1+\dfrac22+\dfrac3{2^2}\ +\,.\!.\!.+\ \dfrac{2022}{2^{2021}}+\dfrac{2023}{2^{2022}}\right)-\left(\dfrac12+\dfrac2{2^2}+\dfrac3{2^3}\ +\,.\!.\!.+\ \dfrac{2022}{2^{2022}}+\dfrac{2023}{2^{2023}}\right)\\A=1+\dfrac12+\dfrac1{2^3}\ +\,.\!.\!.+\ \dfrac1{2^{2021}}+\dfrac1{2^{2022}}-\dfrac{2023}{2^{2023}}\\2\left(A+\dfrac{2023}{2^{2023}}\right)=2+1+\dfrac12+\dfrac1{2^2}\ +\,.\!.\!.+\ \dfrac1{2^{2020}}+\dfrac1{2^{2021}}\\A+\dfrac{2023}{2^{2023}}=2-\dfrac1{2^{2022}}\\A=2-\dfrac1{2^{2022}}+\dfrac{2023}{2^{2023}}<2\)
Sửa:
$2A=1+\dfrac22+\dfrac3{2^2}\ +\,.\!.\!.+\ \dfrac{2022}{2^{2021}}+\dfrac{2023}{2^{2022}}\\2A-A=\left(1+\dfrac22+\dfrac3{2^2}\ +\,.\!.\!.+\ \dfrac{2022}{2^{2021}}+\dfrac{20 23}{2^{2022}}\right)-\left(\dfrac12+\dfrac2{2^2}+\dfrac3{2^3}\ +\,.\!.\!.+\ \dfrac{2022}{2^{2022}}+\dfrac{2023}{2^{2023}}\right)\\A=1+\dfrac12+\dfrac1{2^3}\ +\,.\!.\!.+\ \dfrac1{2^{2021}}+\dfrac1{2^{2022}}-\dfrac{2023}{2^{2023}}\\2\left(A+\dfrac{2023}{2^{2023}}\right)=2+1+\dfrac12+\dfrac1{2^2}\ +\,.\!.\!.+\ \dfrac1{2^{2020}}+\dfrac1{2^{2021}}\\A+\dfrac{2023}{2^{2023}}=2-\dfrac1{2^{2022}}\\A=2-\dfrac1{2^{2022}}+\dfrac{2023}{2^{2023}}<2$bài 1:cho S = 1+2+22+23+...+22023
a. tính tổng
b.cho B = 22024 so sánh S và B
bài 2: tính tổng H=3+32+33+...+32022
Bài 1
a) S = 1 + 2 + 2² + 2³ + ... + 2²⁰²³
2S = 2 + 2² + 2³ + 2⁴ + ... + 2²⁰²⁴
S = 2S - S = (2 + 2² + 2³ + ... + 2²⁰²⁴) - (1 + 2 + 2² + 2³)
= 2²⁰²⁴ - 1
b) B = 2²⁰²⁴
B - 1 = 2²⁰²⁴ - 1 = S
B = S + 1
Vậy B > S
a,
\(S=1+2+2^2+...+2^{2023}\)
\(2S=2+2^2+2^3+...+2^{2024}\)
\(\Rightarrow S=2^{2024}-1\)
b.
Do \(2^{2024}-1< 2^{2024}\)
\(\Rightarrow S< B\)
2.
\(H=3+3^2+...+3^{2022}\)
\(\Rightarrow3H=3^2+3^3+...+3^{2023}\)
\(\Rightarrow3H-H=3^{2023}-3\)
\(\Rightarrow2H=3^{2023}-3\)
\(\Rightarrow H=\dfrac{3^{2023}-3}{2}\)
Bài 2
H = 3 + 3² + 3³ + ... + 3²⁰²²
⇒ 3H = 3² + 3³ + 3⁴ + ... + 3²⁰²³
⇒2H = 3H - H
= (3² + 3³ + 3⁴ + ... + 3²⁰²³) - (3 + 3² + 3³ + ... + 3²⁰²²)
= 3²⁰²³ - 3
⇒ H = (3²⁰²³ - 3) : 2
tìm tổng S=1+2+22+...+22023 Mong mọi người giúp mik đang cần gấp
S = 1 + 2 + 22 + ... + 22023
2S = 2 + 22+ 23+ .... + 22024
2S - S = 2 + 22 + 23 + ... + 22024 - (1 + 2 + 22 + 23 +...+ 22023)
S = 2 + 22 + 23 +...+ 22024 - 1 - 2 - 22 - 23 - ... - 22023
S = 22024 - 1
rút gọn các phân số sau trong đó có kết quả là 1/2
3/9
4/2
2/4
6/2
$\dfrac24$
vì $\dfrac24=\dfrac{2 \times 1}{2 \times 2}=\dfrac12$
Biết tích 21 x 22 x 23 x 24 x 25 có kết quả là số có dạng 63*56**. Không nhân trực tiếp kết quả, hãy tìm giá trị của các số
hai * cuối là 00 vì số nào nhân với 25 thì số hàng chục và đơn vị là 00,còn dấu * thứ 3 là số 7
Ta có:21x22x23x24x25=7x3x22x23x3x8x25
Khi nhân 25 với 1 số chẵn thì tích sẽ có tận cùng là 2 chữ số 0
nên ta được 63*5600
Ta thấy tích trên chia hết cho 9(3x3) nên 6+3+*+5+6+0+0chia hết cho 9
nên *=7
Vậy tích là 6375600
Câu 22. Kết quả phép tính (2/3 - 3/2) : 4/3 + 1/2
A.1/8
B.-1/8
C.9/8
D.Kết quả khác
Câu 23.Kết quả phép tính (2 + -7/13) + -6/13
A.1
B.-1
C.-11/13
D.Kết quả khá