Tìm x, y, z \(\in Z\) biết:
a) \(x^3+y^3=9z^3\)
b) \(x^3+3y^3=9z^3\)
tìm x;y;z biết a)x3+y3=9z3
b)x3+3y3=9z3 (x;y;z thuộc R)
Cho các số x, y, z > 0 thỏa mãn x + y + z = 1. Tìm GTLN của biểu thức:
\(A=\frac{x}{9x^3+3y^2+z}+\frac{y}{9y^3+3z^2+x}+\frac{z}{9z^3+3x^2+y}+2017\left(xy+yz+zx\right)\)
Áp dụng bất đẳng thức Cauchy-Schwarz, ta được:
\(\left(9x^3+3y^2+z\right)\left(\frac{1}{9x}+\frac{1}{3}+z\right)\ge\left(x+y+z\right)^2\)
\(\Rightarrow\frac{x}{9x^3+3y^2+z}\le\frac{x\left(\frac{1}{9x}+\frac{1}{3}+z\right)}{\left(x+y+z\right)^2}=\frac{\frac{1}{9}+\frac{x}{3}+zx}{\left(x+y+z\right)^2}\)(1)
Hoàn toàn tương tự, ta có: \(\frac{y}{9y^3+3z^2+x}\le\frac{\frac{1}{9}+\frac{y}{3}+xy}{\left(x+y+z\right)^2}\)(2); \(\frac{z}{9z^3+3x^2+y}\le\frac{\frac{1}{9}+\frac{z}{3}+yz}{\left(x+y+z\right)^2}\)(3)
Cộng theo vế của 3 bất đẳng thức (1), (2), (3), ta được:
\(\frac{x}{9x^3+3y^2+z}+\frac{y}{9y^3+3z^2+x}+\frac{z}{9z^3+3x^2+y}\)\(\le\frac{\frac{1}{9}.3+\frac{x+y+z}{3}+xy+yz+zx}{\left(x+y+z\right)^2}\)
\(\le\frac{\frac{1}{9}.3+\frac{x+y+z}{3}+\frac{\left(x+y+z\right)^2}{3}}{\left(x+y+z\right)^2}=1\)(*)
Mặt khác, có: \(2017\left(xy+yz+zx\right)\le2017.\frac{\left(x+y+z\right)^2}{3}=\frac{2017}{3}\)(**)
Từ (*) và (**) suy ra \(A=\frac{x}{9x^3+3y^2+z}+\frac{y}{9y^3+3z^2+x}+\frac{z}{9z^3+3x^2+y}+2017\left(xy+yz+zx\right)\)
\(\le1+\frac{2017}{3}=\frac{2020}{3}\)
Đẳng thức xảy ra khi \(x=y=z=\frac{1}{3}\)
Tìm tất cả các số nguyên x,y,z thỏa mãn x^3 +3y^3 +9z^3=12xyz
Ta có: \(3y^3;9y^3;12xyz⋮3\Rightarrow x^3⋮3\Rightarrow x⋮3\).
Đặt \(x=3x_1(x_1\in\mathbb{Z})\).
Thay vào phương trình ban đầu ta có:
\(\left(3x_1\right)^3+3y^3+9z^3=12.3x_1yz\Leftrightarrow9x_1^3+y^3+3z^3=12x_1yz\left(2\right)\).
Tương tự: \(y_1\vdots 3\Rightarrow y=3y_1(y_1\in\mathbb{Z})\).
Thay vào (2) ta có: \(9x_1^3+\left(3y_1\right)^3+3z^3=12x_1.3y_1z\Leftrightarrow3x_1^3+9y_1^3+z_1^3=12x_1y_1z\).
Tương tự \(z=3z_1(z_1\in\mathbb{Z})\). Ta có \(x_1^3+3y_1^3+9z_1^3=12x_1y_1z_1\).
Suy ra \(\left(x_1,y_1,z_1\right)\) cũng là nghiệm của phương trình.
Từ đó ta có nhận xét nếu \(\left(x,y,z\right)\) là nghiệm của phương trình thì \(\left(\frac{x}{3},\frac{y}{3},\frac{z}{3}\right)\) cũng là nghiệm của phương trình.
Theo nguyên lí quy nạp thì \(\left(\frac{x}{3^k},\frac{y}{3^k},\frac{z}{3^k}\right)\) là nghiệm của phương trình với mọi \(k\in\mathbb{N}\).
Do đó \(x,y,z⋮3^k\forall k\in\mathbb{N}\).
Điều này chỉ xảy ra khi x = y = z = 0.
Vậy x = y = z = 0 là nghiệm duy nhất của pt.
Đính chính:
Ở dòng năm sửa lại là:
Tương tự: \(y\vdots 3\Rightarrow y=3y_1(y_1\in\mathbb{Z})\).
Tìm x, y, z biết x/y=3/5, 7y=6z và 4x+8y -9z= -3
Cho các số x, y, z > 0 thỏa mãn x + y + z = 1. Tìm GTLN của biểu thức:
\(A=\frac{x}{9x^3+3y^2+z}+\frac{y}{9y^3+3z^2+x}+\frac{z}{9z^3+3x^2+y}+2017\left(xy+yz+zx\right)\)
Ta có:\(\left(9x^3+3y^2+z\right)\left(\dfrac{1}{9x}+\dfrac{1}{3}+z\right)\ge\left(x+y+z\right)^2\)
\(\Leftrightarrow\dfrac{x}{9x^3+3y^2+z}\le\dfrac{x\left(\dfrac{1}{9x}+\dfrac{1}{3}+z\right)}{\left(x+y+z\right)^2}=\dfrac{\dfrac{1}{9}+\dfrac{x}{3}+xz}{\left(x+y+z\right)^2}\)
Tương tự rồi cộng theo vế:
\(Σ_{cyc}\dfrac{x}{9x^3+3y^2+z}\le\dfrac{\dfrac{1}{9}\cdot3+\dfrac{x+y+z}{3}+xy+yz+xz}{\left(x+y+z\right)^2}\)
\(\le\dfrac{\dfrac{1}{9}\cdot3+\dfrac{x+y+z}{3}+\dfrac{\left(x+y+z\right)^2}{3}}{\left(x+y+z\right)^2}=1\)
Lại có: \(2017\left(xy+yz+xz\right)\le2017\dfrac{\left(x+y+z\right)^2}{3}=\dfrac{2017}{3}\)
\(\Rightarrow A\le\dfrac{2020}{3}\)
Dấu "=" khi \(x=y=z=\dfrac{1}{3}\)
Vậy ko ra yếu zzzz
Tìm x;y;z biết
\(\dfrac{2}{3}x=\dfrac{3}{4}y;\dfrac{1}{5}y=\dfrac{3}{7}z\)và 3x+4y-9z=254
Tìm x,y,z biết:
a)\(\dfrac{x-1}{2}\)=\(\dfrac{y-2}{3}\)=\(\dfrac{z-3}{4}\) và 2x+3y-z=50
b)\(\dfrac{x}{2}\)=\(\dfrac{y}{3}\)=\(\dfrac{z}{5}\)và xyz=810
a, Ta có :
\(\dfrac{x-1}{2}=\dfrac{y-2}{3}=\dfrac{z-3}{4}\Rightarrow\dfrac{2x-2}{4}=\dfrac{3y-6}{9}=\dfrac{z-3}{4}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\dfrac{2x-2}{4}=\dfrac{3y-6}{9}=\dfrac{z-3}{4}=\dfrac{2x+3y-z-2-6+3}{4+9-4}=\dfrac{50-5}{9}=5\)
\(\Rightarrow x=11;y=17;z=23\)
b, Đặt \(\left\{{}\begin{matrix}x=2k\\y=3k\\z=5k\end{matrix}\right.\Rightarrow xyz=810\)
\(\Rightarrow2k.3k.5k=810\Leftrightarrow30k^3=810\Leftrightarrow k^3=27\Leftrightarrow k=3\)
\(\Rightarrow x=6;y=9;z=15\)
a) Ta có: \(\dfrac{x-1}{2}=\dfrac{2x-2}{4};\dfrac{y-2}{3}=\dfrac{3y-6}{9};\dfrac{z-3}{4}\)
Áp dụng t/c dtsbn:
\(\dfrac{2x-2}{4}=\dfrac{3y-6}{9}=\dfrac{z-3}{4}=\dfrac{2x-2+3y-6-z+3}{4+9-4}=5\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x-1}{2}=5\\\dfrac{y-2}{3}=5\\\dfrac{z-3}{4}=5\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=11\\y=17\\z=12\end{matrix}\right.\)
b) Đặt \(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}=k\)
\(\Rightarrow\left\{{}\begin{matrix}x=2k\\y=3k\\z=5k\end{matrix}\right.\)
xyz = 810
=> 2k.3k.5k = 810
=> k = 3
\(\Rightarrow\left\{{}\begin{matrix}x=6\\y=9\\z=15\end{matrix}\right.\)
a) Ta có: \(\dfrac{x-1}{2}=\dfrac{y-2}{3}=\dfrac{z-3}{4}\)
nên \(\dfrac{2x-2}{4}=\dfrac{3y-6}{9}=\dfrac{z-3}{4}\)
mà 2x+3y-z=50
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{2x-2}{4}=\dfrac{3y-6}{9}=\dfrac{z-3}{4}=\dfrac{2x+3y-z-2-6+3}{4+9-4}=\dfrac{50-5}{9}=5\)
Do đó:
\(\left\{{}\begin{matrix}x-1=10\\y-2=15\\z-3=20\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=11\\y=17\\z=23\end{matrix}\right.\)
b) Đặt \(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}=k\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=2k\\y=3k\\z=5k\end{matrix}\right.\)
Ta có: xyz=810
\(\Leftrightarrow30k^3=810\)
\(\Leftrightarrow k^3=27\)
\(\Leftrightarrow k=3\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=2k=2\cdot3=6\\y=3k=3\cdot3=6\\z=5k=5\cdot3=15\end{matrix}\right.\)
Tìm x,y,z biết:
a) 3x=2y, 7y=5z và x-y+z=32
b) \(\dfrac{x}{2}\)=\(\dfrac{y}{3}\) và x.y=24
c)\(\dfrac{x-1}{2}\)=\(\dfrac{y-2}{3}\)=\(\dfrac{z-3}{4}\) và 2x+3y-z=50
d)\(\dfrac{x}{2}\)=\(\dfrac{y}{3}\)=\(\dfrac{z}{5}\) và x.y.z=810
\(\left\{{}\begin{matrix}x^3+y=3x+4\\2y^3+z=6y+6\\3z^3+x=9z+8\end{matrix}\right.\)