\(\text{Tìm GTLN của:}\)
\(P=\sqrt{x-2}+\sqrt{4-x}\)
\(\text{P.S:}\)\(\text{(dùng HĐT)}\)
Tìm GTLN của \(A\text{=}3x\text{+}\sqrt{2-x^2}\)
Áp dụng bđt bu - nhi -a, ta có
\(A^2\le\left(3^2+1\right)\left(x^2+2-x\right)=20\Rightarrow A\le2\sqrt{5}\)
dấu = xayra <=>\(\frac{x}{3}=\sqrt{2-x^2}\Leftrightarrow9\left(2-x^2\right)=x^2\Leftrightarrow18=10x^2\Leftrightarrow x=\frac{3}{\sqrt{5}}\)
Bạn ơi, mình chưa hiểu chỗ này lắm, tại sao \(\left(3^2\text{+}1\right)\left(x^2\text{+}2-x\right)\text{=}20\)
chết hơi nhầm chút, phải là (x^2+2-x^2) bạn ạ!Thông Cảm ^_^
Tìm GTNN và GTLN
\(\sqrt{x\text{+}3}\text{+}\sqrt{5-x}\)
1, P=(\(\dfrac{\text{x-1}}{\text{x+3}\sqrt{\text{x-4}}}+\dfrac{\sqrt{\text{x}}+1}{1-\sqrt{\text{x}}}\)) : \(\dfrac{\text{x}+2\sqrt{\text{x}}+1}{x-1}\)+1
a, Rút gọn P
b, Tìm x để P<0
Tìm GTNN của biểu thức sau :
\(\sqrt{\text{x-1}\text{-2}\sqrt{\text{x-2}}}-\sqrt{\text{x+7}\text{-6}\sqrt{\text{x-2}}}\)
Ta có: \(A=\sqrt{x-1-2\sqrt{x-2}}-\sqrt{x+7-6\sqrt{x-2}}\)
\(=\sqrt{x-2-2\cdot\sqrt{x-2}\cdot1+1}-\sqrt{x-2-6\cdot\sqrt{x-2}+9}\)
\(=\sqrt{\left(\sqrt{x-2}-1\right)^2}-\sqrt{\left(\sqrt{x-2}-3\right)^2}=\left|\sqrt{x-2}-1\right|-\left|\sqrt{x-2}-3\right|\)
=>\(A\le\left|\sqrt{x-2}-1-\sqrt{x-2}+3\right|=2\forall x\) thỏa mãn ĐKXĐ
Dấu '=' xảy ra khi \(\left(\sqrt{x-2}-1\right)\left(\sqrt{x-2}-3\right)\ge0\)
=>\(\left[\begin{array}{l}\sqrt{x-2}\ge3\\ \sqrt{x-2}\le1\end{array}\right.\Rightarrow\left[\begin{array}{l}x-2\ge9\\ 0\le x-2\le1\end{array}\right.\Rightarrow\left[\begin{array}{l}x\ge11\\ 2\le x\le3\end{array}\right.\)
giải phương trình
\(\text{x}^2-4=3\sqrt{\text{x}^3-4\text{x}}\)
\(9\text{x}+17=6\sqrt{8\text{x}-1}+4\sqrt{\text{x}+3}\)
\(\sqrt{2\text{x}-1}+\text{x}=\sqrt{\text{x}}+\sqrt{\text{x}^2-\text{x}+1}\)
\(2\sqrt{\text{x}^2-\text{x}+1}+\sqrt{\text{x}^2+\text{x}+1}=\sqrt{\text{x}^4+\text{x}^2+1}+2\)
a: Đặt \(x^2-4=a\)
Pt sẽ là \(a=3\sqrt{xa}\)
\(\Rightarrow a^2=9xa\)
\(\Leftrightarrow a\left(a-9x\right)=0\)
\(\Leftrightarrow\left(x^2-4\right)\left(x^2-4-9x\right)=0\)
hay \(x\in\left\{2;-2;\dfrac{9+\sqrt{97}}{2};\dfrac{9-\sqrt{97}}{2}\right\}\)
d: Đặt \(\sqrt{x^2-x+1}=a;\sqrt{x^2+x+1}=b\)
Pt sẽ là 2a+b=ab+2
=>(b-2)(1-a)=0
=>b=2 và 1-a
\(\Leftrightarrow\left\{{}\begin{matrix}x^2+x+1=4\\x^2-x+1=1\end{matrix}\right.\Leftrightarrow x\in\varnothing\)
Tìm GTLN của biểu thức : -X-\(\sqrt{\text{x}}\)+2
ÔI, em nhầm rùi
= -(\(\sqrt{x}\)+ 1/2) +1/4 +2
GTLN = 9/4
Lần này không sai đâu chị
E nhầm rồi kìa. Làm gì có giá trị x nào thảo mãn được cái đó e
Tìm điều kiện xác định của bất phương trình:
\(\dfrac{\sqrt{\text{x - 2}}}{\text{x}+1}-\sqrt{\text{4 - x}}\ge0\)
ĐKXĐ: \(\left\{{}\begin{matrix}x-2>=0\\4-x>=0\\x+1< >0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2< =x< =4\\x< >-1\end{matrix}\right.\Leftrightarrow x\in\left[2;4\right]\)
giải phương trình sau :
\(\sqrt{x}+\sqrt[4]{x\text{(}1-x\text{)}^2}+\sqrt[4]{\text{(}1-x\text{)}^3}=\sqrt{1-x}+\sqrt[4]{x^3}+\sqrt[4]{x^2.\text{(}1-x\text{)}}\)
\(\text{Tìm GTLN, GTNN của biểu thức: }\)
\(1,A=\sqrt{x-2}+\sqrt{4-x}\)
\(2,B=\sqrt{3+x}+\sqrt{3-x}\)
\(3,C=2x+\sqrt{5-x^2}\)
1 ) \(A=\sqrt{x-2}+\sqrt{4-x}\)
ĐKXĐ : \(2\le x\le4\)
\(\Rightarrow A^2=x-2+4-x+2\sqrt{\left(x-2\right)\left(4-x\right)}=2+2\sqrt{\left(x-2\right)\left(4-x\right)}\)
Áp dụng bđt AM - GM ta có :
\(2\sqrt{\left(x-2\right)\left(4-x\right)}\le x-2+4-x=2\)
\(\Rightarrow A^2\le2+2=4\Rightarrow-2\le A\le2\)
Mà A > 0 nên ko thể có min = - 2 nên \(2\le x\le4\) ta chọn x = 2
=> A = \(\sqrt{2}\)
Vậy \(\sqrt{2}\le A\le2\)