Khai triển biểu thức : 2(x2+\(\dfrac{1}{2}y\))(2x2-y)
Bài 1: Khai triển các hằng đẳng thức.
1,(x+1)2
2,(2x+1)2
3, (2x+y)2
4, (2x+3)2
5, ( 3x+2y)2
6, (2x2+1)2
7, (x3+1)2
8, (x2+y3)2
9, ( x2+2y2)2
10, (1/2x+1/3y)2
1) \(\left(x+1\right)^2=x^2+2x+1\)
2) \(\left(2x+1\right)^2=4x^2+4x+1\)
3) \(\left(2x+y\right)^2=4x^2+4xy+y^2\)
4) \(\left(2x+3\right)^2=4x^2+12x+9\)
5) \(\left(3x+2y\right)^2=9x^2+12xy+4y^2\)
6) \(\left(2x^2+1\right)^2=4x^4+4x^2+1\)
7) \(\left(x^3+1\right)^2=x^6+2x^3+1\)
8) \(\left(x^2+y^3\right)^2=x^4+2x^2y^3+y^6\)
9) \(\left(x^2+2y^2\right)^2=x^4+4x^2y^2+4y^4\)
10) \(\left(\dfrac{1}{2}x+\dfrac{1}{3}y\right)^2=\dfrac{1}{4}x^2+\dfrac{1}{3}xy+\dfrac{1}{9}y^2\)
Bài 1. Khai triển các hằng đẳng thức sau:
c) (-5x-y)3 h) (3y-2x2)3
Bài 2. Viết các biểu thức sau dưới dạng lập phương của một tổng hoặc lập phương của một hiệu.
d) -8x2+36x2-54+27
Bài 1:
c: \(\left(-5x-y\right)^3=-125x^3-75x^2y-15xy^2-y^3\)
h: \(\left(3y-2x^2\right)^3=27y^3-54y^2x^2+36yx^4-8x^6\)
Bài 1:
c. (-5x - y)3 = -125x3 - 50x2y - 10xy2 - y3
d. (3y - 2x2)3 = 27y3 - 18x2y2 + 24xy4 - 8x6
Câu 1. Khai triển các biểu thức sau:
a) (x-3)2 b) (x+1/2)2
c) (5x-y)2 d) (10x2-3xy2)2
Câu 2. Viết các biểu thức sau dưới dạng bình phương của một tổng:
a) x2-4x+4 b) x2+10x+25
c) x2/4 -x+1 d) 9(x+1)2-6(x+1)+1
e) (x-2y)2-8(x2-2xy)+16x2
Câu 3. Khai triển các biểu thức:
a) (a-b+c)2 b) (a+2b-c)2
c) (2a-b-c)2
Câu 4. Rút gọn biểu thức:
a) A=(x-y)2+(x+y)2
b) B=(2x-1)2-2(2x-3)2+4
Câu 5. Tính nhanh:
a) 492 b) 512
c) 99.100
Câu 7. Tìm giá trị nhỏ nhất của biểu thức:
a) A=x2-2x+7 b) B=5x2-20x
Câu 1. Khai triển các biểu thức sau:
a) (x-3)2 b) (x+1/2)2
c) (5x-y)2 d) (10x2-3xy2)2
Câu 2. Viết các biểu thức sau dưới dạng bình phương của một tổng:
a) x2-4x+4 b) x2+10x+25
c) x2/4 -x+1 d) 9(x+1)2-6(x+1)+1
e) (x-2y)2-8(x2-2xy)+16x2
Câu 3. Khai triển các biểu thức:
a) (a-b+c)2 b) (a+2b-c)2
c) (2a-b-c)2
Câu 4. Rút gọn biểu thức:
a) A=(x-y)2+(x+y)2
b) B=(2x-1)2-2(2x-3)2+4
Câu 5. Tính nhanh:
a) 492 b) 512
c) 99.100
Câu 7. Tìm giá trị nhỏ nhất của biểu thức:
a) A=x2-2x+7 b) B=5x2-20x
a. (x + y)2 = x2 + 2xy + y2
b. (x - 2y)2 = x2 - 4xy - 4x2
c. (xy2 + 1)(xy2 - 1) = x2y4 - 1
d. (x + y)2(x - y)2 = (x2 + 2xy + y2)(x2 - 2xy + y2) = x4 - (2xy + y2)2 = x4 - (4x2y2 + y4) = x4 - 4x2y2 - y4
Chucs hocj toots
Câu 2:
a: \(x^2-4x+4=\left(x-2\right)^2\)
b: \(x^2+10x+25=\left(x+5\right)^2\)
d: \(9\left(x+1\right)^2-6\left(x+1\right)+1=\left(3x+2\right)^2\)
e: \(\left(x-2y\right)^2-8\left(x-2xy\right)+16x^2=\left(x-2y+4x\right)^2=\left(5x-2y\right)^2\)
Câu 7:
a: Ta có: \(A=x^2-2x+7\)
\(=x^2-2x+1+6\)
\(=\left(x-1\right)^2+6\ge6\forall x\)
Dấu '=' xảy ra khi x=1
b: Ta có: \(B=5x^2-20x\)
\(=5\left(x^2-4x+4-4\right)\)
\(=5\left(x-2\right)^2-20\ge-20\forall x\)
Dấu '=' xảy ra khi x=2
khai triển các biểu thức sau:
\(a.\left(2x+3y\right)^2\)
\(b.2\left(\dfrac{1}{2}x^2+y\right)\left(x^2-2y\right)\)
\(c.\left(x+y+z\right)^2\)
a. (2x+3y)2= (2x)2+2.2x.3y+(3y)2
=4x2+12xy+9y2
b. 2(\(\dfrac{1}{2}\)x2+y)(x2-2y)
=(x2+2y)(x2-2y)
=x4-4y2
c, (x+y+z)2= [(x+y)+z]2
=(x+y)2+2(x+y)z+z2
=x2+2xy+y2+2xz+2yz+z2
=x2+y2+z2+2xy+2yz+2xz
Bài 1. Khai triển các hằng đẳng thức sau:
a) (2x+1)3 b) (x-3)3
c) (-5x-y)3 h) (3y-2x2)3
Bài 2. Viết các biểu thức sau dưới dạng lập phương của một tổng hoặc lập phương của một hiệu.
a) x3+15x2+75x+125
b) 1-15y+75y2+125y3
c) 8x3+4x2y+3/2 xy2+8y3
d) -8x2+36x2-54+27
a) \(\left(2x+1\right)^3\)
\(=\left(2x\right)^3+3.\left(2x\right)^2.1+3.2x.1+1\)
\(=8x^3+12x^2+6x+1\)
b) \(\left(x-3\right)^3\)
\(=x^3-3.x^2.3+3.x.3^2-3^3\)
\(=x^3-9x^2+27x-27\)
Bài 2:
a: \(x^3+15x^2+75x+125=\left(x+5\right)^3\)
b: \(1-15y+75y^2-125y^3=\left(1-5y\right)^3\)
c: \(8x^3+4x^2y+\dfrac{3}{2}xy^2+8y^3=\left(2x+2y\right)^3\)
Khai triển các hằng đẳng thức sau:
a) (3x-2)2 b) (\(\dfrac{x}{3}\)+y3)2 c) 9x2 -225
d) (2x-3y)3 e) (2x2+\(\dfrac{3}{2}\))3 f) (-2xy2+\(\dfrac{1}{2}\)x3y)3
Giải chi tiết giúp mình nha.Cảm ơn
a) \(\left(3x-2\right)^2=\left(3x\right)^2-2.3x.2+2^2=9x^2-12x+4\)
b) \(\left(\dfrac{x}{3}+y^3\right)^2=\left(\dfrac{x}{3}\right)^2+2\dfrac{x}{3}y^3+\left(y^3\right)^2=\dfrac{x^2}{9}+\dfrac{2}{3}xy^3+y^6\)
c) \(9x^2-225=\left(3x\right)^2-\left(15\right)^2=\left(3x-15\right)\left(3x+15\right)\)
d) \(\left(2x-3y\right)^3=\left(2x\right)^3-3\left(2x\right)^23y+3.2x\left(3y\right)^2-\left(3y\right)^3=8x^3-3.4x^2.3y+6x.9y^2-27y^3=8x^3-36x^2y+54xy^2-27y^3\)
e) \(\left(2x^2+\dfrac{3}{2}\right)^3=\left(2x^2\right)^3+3\left(2x^2\right)^2\dfrac{3}{2}+3.2x^2\left(\dfrac{3}{2}\right)^2+\left(\dfrac{3}{2}\right)^3=8x^6+3.4x^4.\dfrac{3}{2}+6x^2.\dfrac{9}{4}+\dfrac{27}{8}=8x^6+18x^4+\dfrac{27}{2}x^2+\dfrac{27}{8}\)
f) \(\left(-2xy^2+\dfrac{1}{2}x^3y\right)^3=\left(-2xy^2\right)+3\left(-2xy^2\right)^2\dfrac{1}{2}x^3y+3\left(-2xy^2\right)\left(\dfrac{1}{2}x^3y\right)^2+\left(\dfrac{1}{2}x^3y\right)^3=-8x^3y^6+3.4x^2y^4.\dfrac{1}{2}x^3y-6xy^2.\dfrac{1}{4}x^6y^2+\dfrac{1}{8}x^9y^3=-8x^3y^6+6x^5y^5-\dfrac{3}{2}x^7y^4+\dfrac{1}{8}x^9y^3\)
1. Thực hiện phép tính:
a) (x-3/4)2 b) (3t+1)2
c) (2a+1/3)(1/3-2a) d) (a3-2)2
2. Khai triển các biểu thức sau:
a) (a/3+4y)2 b) (1/x-3/y)2
c) (x/2-yz/6)(x/2+yz/6) d) (x2+2/5 y)(x2-2/5 y)
3. Viết các biểu thức dưới dạng bình phương của một tổng hoặc hiệu:
a) 4x2+4x+1 b) 9x2-12x+4
c) ab2+1/4a2b4+1 d) 16uv2-8u2v4-1
Bài 3:
a) \(4x^2+4x+1=\left(2x+1\right)^2\)
b) \(9x^2-12x+4=\left(3x-2\right)^2\)
c) \(ab^2+\dfrac{1}{4}a^2b^4+1=\left(\dfrac{1}{2}ab^2+1\right)^2\)
Bài 3:
a: \(4x^2+4x+1=\left(2x+1\right)^2\)
b: \(9x^2-12x+4=\left(3x-2\right)^2\)
c: \(\dfrac{1}{4}a^2b^4+ab^2+1=\left(\dfrac{1}{2}ab^2+1\right)^2\)
d:
khai triển các biểu thức sau
\(2.\left(\dfrac{1}{2}x^2+y\right)\left(x^2-2y\right)\)
\(2\left(\dfrac{1}{2}x^2+y\right)\left(x^2-2y\right)\)
\(=\left(x^2+2y\right)\left(x^2-2y\right)\)
\(=\left(x^2\right)^2-\left(2y\right)^2\)
\(=x^4-4y^2\)