Tìm căn bậc hai số học và căn bậc hai của các số sau :
17 ; 19
a) Đọc các số sau: \(\sqrt {15} ;\sqrt {27,6} ;\sqrt {0,82} \)
b) Viết các số sau: căn bậc hai số học của 39; căn bậc hai số học của \(\frac{9}{{11}}\); căn bậc hai số học của \(\frac{{89}}{{27}}\)
a) \(\sqrt {15} \) đọc là: căn bậc hai số học của mười lăm
\(\sqrt {27,6} \) đọc là: căn bậc hai số học của hai mươi bảy phẩy sáu
\(\sqrt {0,82} \) đọc là: căn bậc hai số học của không phẩy tám mươi hai
b) Căn bậc hai số học của 39 viết là: \(\sqrt {39} \)
Căn bậc hai số học của \(\frac{9}{{11}}\) viết là: \(\sqrt {\frac{9}{{11}}} \)
Căn bậc hai số học của \(\frac{{89}}{{27}}\) viết là: \(\sqrt {\frac{{89}}{{27}}} \)
Tìm căn bậc hai số học của mỗi số sau rồi suy ra căn bậc hai của chúng
121 144 169 225 256 324 361 400
Sqrt(121)=11
Sqrt(144)=12
Sqrt(169)=13
Sqrt(225)=15
Sqrt(256)=16
Sqrt(324)=18
Sqrt(361)=19
Sqrt(400)=20
Lời giải:
CBHSH:
$\sqrt{121}=11; \sqrt{144}=12; \sqrt{169}=13; \sqrt{225}=15; \sqrt{256}=16; \sqrt{324}=18; \sqrt{361}=19; \sqrt{400}=20$
CBH:
Của $121: \pm 11$
Của $144: \pm 12$
Của $169: \pm 13$
Của $225: \pm 15$
Của $256: \pm 16$
Của $324: \pm 18$
Của $361: \pm 19$
Của $400: \pm 20$
Tìm căn bậc hai số học của mỗi số sau rồi suy ra căn bậc hai của chúng:
121; 144; 169; 225; 256; 324; 361; 400
Ta có: √ 121 = 11 v ì 11 > 0 v à 11 2 = 121 n ê n
Căn bậc hai số học của 121 là 11. Căn bậc hai của 121 là 11 và – 11.
Tương tự:
Căn bậc hai số học của 144 là 12. Căn bậc hai của 144 là 12 và -12.
Căn bậc hai số học của 169 là 13. Căn bậc hai của 169 là 13 và -13.
Căn bậc hai số học của 225 là 15. Căn bậc hai của 225 là 15 và -15.
Căn bậc hai số học của 256 là 16. Căn bậc hai của 256 là 16 và -16.
Căn bậc hai số học của 324 là 18. Căn bậc hai của 324 là 18 và -18.
Căn bậc hai số học của 361 là 19. Căn bậc hai của 361 là 19 và -19.
Căn bậc hai số học của 400 là 20. Căn bậc hai của 400 là 20 và -20.
Tìm căn bậc hai số học của mỗi số sau rồi suy ra căn bậc hai của chúng:
121; 144; 169; 225; 256; 324; 361; 400
Ta có: √121 = 11 vì 11 > 0 và 112 = 121 nên
Căn bậc hai số học của 121 là 11. Căn bậc hai của 121 là 11 và – 11.
Tương tự:
Căn bậc hai số học của 144 là 12. Căn bậc hai của 144 là 12 và -12.
Căn bậc hai số học của 169 là 13. Căn bậc hai của 169 là 13 và -13.
Căn bậc hai số học của 225 là 15. Căn bậc hai của 225 là 15 và -15.
Căn bậc hai số học của 256 là 16. Căn bậc hai của 256 là 16 và -16.
Căn bậc hai số học của 324 là 18. Căn bậc hai của 324 là 18 và -18.
Căn bậc hai số học của 361 là 19. Căn bậc hai của 361 là 19 và -19.
Căn bậc hai số học của 400 là 20. Căn bậc hai của 400 là 20 và -20.
Tìm căn bậc hai số học của mỗi số sau rồi suy ra căn bậc hai của chúng: 121 ; 144; 169; 225; 256; 324; 361; 400.
\(\sqrt{121}=11\); \(\sqrt{144}=12\)
\(\sqrt{169}=13\); \(\sqrt{225}=15\);
\(\sqrt{256}=16\); \(\sqrt{324}=18\);
\(\sqrt{361}=19\); \(\sqrt{400}=20\)
Để tìm căn bậc hai của các số này, bạn có thể sử dụng tính toán hoặc dùng máy tính. Dưới đây là căn bậc hai của mỗi số:
1. Căn bậc hai của 121 là √121 = 11.
2. Căn bậc hai của 144 là √144 = 12.
3. Căn bậc hai của 169 là √169 = 13.
4. Căn bậc hai của 225 là √225 = 15.
5. Căn bậc hai của 256 là √256 = 16.
6. Căn bậc hai của 324 là √324 = 18.
7. Căn bậc hai của 361 là √361 = 19.
8. Căn bậc hai của 400 là √400 = 20.
Vậy căn bậc hai của các số đó lần lượt là: 11, 12, 13, 15, 16, 18, 19, và 20.
Bài 1. Tính căn bậc hai số học của các số sau:
1) 36
2) 81
3) 121
4) 144
5) 0,16
7) 29
8) 0
Bài 2. So sánh các căn bậc hai sau:
1) 6 và 41
2) 19 và 4
3) 21 và 5
4) 7 và 51
Bài 1. Tính căn bậc hai số học của các số sau:
1) 36=\(\sqrt{36}=4\)
2) 81\(\sqrt{81}=9\)
3) 121=\(\sqrt{121}=11\)
4) 144=\(\sqrt{144}=12\)
5) 0,16=\(\sqrt{0,16}=0,4\)
7) 29=\(\sqrt{29}~5,39\)
8) 0=\(\sqrt{0}=0\)
Bài 2:
1: \(\sqrt{6}< \sqrt{41}\)
2: \(\sqrt{19}>\sqrt{4}\)
3: \(\sqrt{21}>\sqrt{5}\)
4: \(\sqrt{7}< \sqrt{51}\)
Câu 6: Trong các khẳng định sau, khẳng định nào sai?
A. Căn bậc hai của 9 là 3 C. Căn bậc hai của 5 là √5 và -√5
B. Số 3 là căn bậc hai của 9 D. Số -3 là căn bậc hai của 9
Chứng tỏ rằng:
a) Số 0,8 là căn bậc hai số học của số 0,64
b) Số -11 không phải là căn bậc hai số học của số 121
c) Số 1,4 là căn bậc hai số học của số 1,96 nhưng –1,4 không phải là căn bậc hai số học của số 1,96.
a) Vì 0,8 > 0 và \(0,{8^2} = 0,64\) nên số 0,8 là căn bậc hai số học của số 0,64
b) Vì tuy \({( - 11)^2} = 121\) nhưng -11 < 0 nên số -11 không phải là căn bậc hai số học của số 121
c) Vì \(1,{4^2} = 1,96\) và 1,4 > 0 nên số 1,4 là căn bậc hai số học của số 1,96
Nhưng vì -1,4 < 0 nên –1,4 không phải là căn bậc hai số học của số 1,96.
Tìm căn bậc hai số học của mỗi số sau rồi suy ra căn bậc hai của chúng:
121; 144; 169; 225; 256; 324; 361; 400.
Ta có: √121 = 11 vì 11 > 0 và 112 = 121 nên
Căn bậc hai số học của 121 là 11. Căn bậc hai của 121 là 11 và – 11.
Tương tự:
Căn bậc hai số học của 144 là 12. Căn bậc hai của 144 là 12 và -12.
Căn bậc hai số học của 169 là 13. Căn bậc hai của 169 là 13 và -13.
Căn bậc hai số học của 225 là 15. Căn bậc hai của 225 là 15 và -15.
Căn bậc hai số học của 256 là 16. Căn bậc hai của 256 là 16 và -16.
Căn bậc hai số học của 324 là 18. Căn bậc hai của 324 là 18 và -18.
Căn bậc hai số học của 361 là 19. Căn bậc hai của 361 là 19 và -19.
Căn bậc hai số học của 400 là 20. Căn bậc hai của 400 là 20 và -20.
√121 = 11, vì 11 ≥ 0 nên 112 =121.
Căn bậc hai của 121 là 11 và -11.
√144 = 12, vì 12 ≥ 0 nên 122 = 144.
Căn bậc hai của 144 là 12 và -12.
√169 = 13, vì 13 ≥ 0 nên 132 = 169.
Căn bậc hai của 169 là 13 và -13.
√225 = 15, vì 15 ≥ 0 nên 152 = 225.
Căn bậc hai của 225 là 15 và -15.
√256 = 16, vì 16 ≥ 0 nên 162 = 156.
Căn bậc hai của 256 là 16 và -16.
√324 = 18, vì 18 ≥ 0 nên 182 = 324.
Căn bậc hai của 324 là 18 và -18.
√361 = 19, vì 19 ≥ 0 nên 192 = 361.
Căn bậc hai của 361 là 19 và -19.
√400 = 20, vì 20 ≥ 0 nên 202 = 400.
Căn bậc hai số học của 121 là 11. Nên 121 có căn bậc hai là 11 và -11.
Căn bậc hai số học của 144 là 12. Nên 144 có căn bậc hai là 12 và -12.
Căn bậc hai số học của 169 là 13. Nên 169 có căn bậc hai là 13 và -13.
Căn bậc hai số học của 225 là 15. Nên 225 có căn bậc hai là 15 và -15.
Căn bậc hai số học của 256 là 16. Nên 256 có căn bậc hai là 16 và -16.
Căn bậc hai số học của 324 là 18. Nên 324 có căn bậc hai là 18 và -18.
Căn bậc hai số học của 361 là 19. Nên 361 có căn bậc hai là 19 và -19.
Căn bậc hai số học của 400 là 20. Nên 400 có căn bậc hai là 20 và -20.