rút gọn
\(\left(2x-1\right).\left(3x+1\right).\left(3x+4\right)\cdot\left(3-2x\right)\)
Rút gọn biểu thức sau:
A=\(\left(2x+y\right)^2-\left(y-2x\right)^2\)
B=\(\left(3x+2\right)^2+2\cdot\left(2+3x\right)\cdot\left(1-2y\right)+\left(2y-1\right)^2\)
a: Ta có: \(A=\left(2x+y\right)^2-\left(2x-y\right)^2\)
\(=\left(2x+y-2x+y\right)\left(2x+y+2x-y\right)\)
\(=4x\cdot2y=8xy\)
b: Ta có: \(B=\left(3x+2\right)^2+2\left(3x+2\right)\left(1-2y\right)+\left(2y-1\right)^2\)
\(=\left(3x+2+1-2y\right)^2\)
\(=\left(3x-2y+3\right)^2\)
rút gọn biểu thức:
\(3x^2\cdot\left(2y-1\right)-2x^2\cdot\left(5y-3\right)-2x\cdot\left(x-1\right)\)
rút gọn biểu thức sau bằng cách nhanh nhất
A = \(\left(a^2+b^2-c^2\right)^2-\left(a^2-b^2+c^2\right)^2-4a^2b^2\)
B = \(\left(3x^3+3x+1\right)\cdot\left(3x^3-3x+1\right)-\left(3x^3+1\right)^2\)
C = \(\left(2-6x\right)^2+\left(2-5x\right)^2+2\cdot\left(6x-2\right)\cdot\left(2-5x\right)\)
D = \(5\cdot\left(3x-1\right)^2+4\cdot\left(5x+1\right)^2-12\cdot\left(5x-2\right)\left(5x+2\right)\)
E = \(\left(3x-1\right)^2+\left(2x+4\right)\cdot\left(1-3x\right)+\left(x+2\right)^2\)
G = \(\left(x-1\right)^3+4\cdot\left(x+1\right)\cdot\left(1-x\right)+3\cdot\left(x-1\right)\cdot\left(x^2+x+1\right)\)
\(A=\left(a^2+b^2-c^2\right)^2-\left(a^2-b^2+c^2\right)^2-4a^2b^2\)
\(=\left(a^2+b^2-c^2+a^2-b^2+c^2\right)\left(a^2+b^2-c^2-a^2+b^2-c^2\right)-4a^2b^2\)
\(=2a^2.2b^2-4a^2b^2=0\)
\(C=\left(2-6x\right)^2+\left(2-5x\right)^2+2\left(6x-2\right)\left(2-5x\right)\)
\(=\left[\left(2-6x\right)+\left(2-5x\right)\right]^2\)
\(=\left[4-11x\right]^2\)
\(=16-88x+121x^2\)
chúc bn học tốt
Tìm x :
\(3x\cdot\left(x-2\right)-2x\cdot\left(2x-1\right)=\left(1-x\right)\cdot\left(1+x\right)\)
\(\left(5x+3\right)\cdot\left(3x-5\right)-\left(x-2\right)\cdot\left(2x+1\right)=6x\cdot\left(3x+1\right)-x^2\)
\(\left(2x-1\right)\cdot\left(2x+1\right)-3\cdot\left(x-1\right)=\left(1-4x\right)\cdot\left(1-x\right)\)
\(\left(2x^2+1\right)\cdot\left(3x^2-1\right)-\left(4x^2-3\right)\cdot\left(x^2+1\right)=x\cdot\left(2x^3+1\right)\)
GIÚP MK ĐI MAI MK PHẢI NỘP RÙI !
1> 3x(x-2)-2x(2x-1)=(1-x)(1+x)
⇔\(3x^2\)-6x-\(4x^2\)+2x=1-\(x^2\)
⇔-1\(x^2\) - 4x= 1- \(x^2\)
⇔ -1\(x^2\) -4x+ \(x^2\) = 1
⇔-4x=1
⇔ x = \(\dfrac{-1}{4}\)
Chứng minh biểu thức không phụ thuộc x :
1, \(\left(3x-1\right)^2-2\cdot\left(2x-3\right)\cdot\left(2x+3\right)-\left(x-3\right)^2\)
2, \(\left(3x+2\right)^3-\left(3x-2\right)^3-3\cdot\left(6x-1\right)\cdot\left(6x+1\right)\)
3, \(\left(3x-5\right)^2+3\cdot\left(x+1\right)\cdot\left(x-1\right)-\left(4x-3\right)^2+\left(2x+2\right)\cdot\left(2x+1\right)\)
\(P=\left[\left(x^4-x+\frac{x-3}{x^3+1}\right)\cdot\left(\frac{\left(x^3-2x^2-2x-1\right)\cdot\left(x+1\right)}{x^9+x^7-3x^2-3}\right)+1-\frac{2\left(x+6\right)}{x^2+1}\right]\cdot\frac{4x^2+4x+1}{\left(x+3\right)\left(4-x\right)}\)
a, Tìm ĐKXD của P
b,Rút Gọn P
c,Chứng Minh Với các giá trị của x mà biểu thức P có nghĩa thì \(-5\le P\le0\)
Giải PT:
a1. \(\cot\left(2x+\dfrac{\pi}{3}\right)\)=\(-\sqrt{3}\)
a2. \(\cot\left(3x-10^{\cdot}\right)\cot2x=1\)
a3. \(\cot\left(\dfrac{\pi}{4}-2x\right)-\tan x=0\)
a4. \(\cot\left(30^{\cdot}+3x\right)+\tan\left(x-10^{\cdot}\right)=0\)
a1.
$\cot (2x+\frac{\pi}{3})=-\sqrt{3}=\cot \frac{-\pi}{6}$
$\Rightarrow 2x+\frac{\pi}{3}=\frac{-\pi}{6}+k\pi$ với $k$ nguyên
$\Leftrightarrow x=\frac{-\pi}{4}+\frac{k}{2}\pi$ với $k$ nguyên
a2. ĐKXĐ:...............
$\cot (3x-10^0)=\frac{1}{\cot 2x}=\tan 2x$
$\Leftrightarrow \cot (3x-\frac{\pi}{18})=\cot (\frac{\pi}{2}-2x)$
$\Rightarrow 3x-\frac{\pi}{18}=\frac{\pi}{2}-2x+k\pi$ với $k$ nguyên
$\Leftrightarrow x=\frac{\pi}{9}+\frac{k}{5}\pi$ với $k$ nguyên.
a3. ĐKXĐ:........
$\cot (\frac{\pi}{4}-2x)-\tan x=0$
$\Leftrightarrow \cot (\frac{\pi}{4}-2x)=\tan x=\cot (\frac{\pi}{2}-x)$
$\Rightarrow \frac{\pi}{4}-2x=\frac{\pi}{2}-x+k\pi$ với $k$ nguyên
$\Leftrightarrow x=-\frac{\pi}{4}+k\pi$ với $k$ nguyên.
a4. ĐKXĐ:.....
$\cot (\frac{\pi}{6}+3x)+\tan (x-\frac{\pi}{18})=0$
$\Leftrightarrow \cot (\frac{\pi}{6}+3x)=-\tan (x-\frac{\pi}{18})=\tan (\frac{\pi}{18}-x)$
$=\cot (x+\frac{4\pi}{9})$
$\Rightarrow \frac{\pi}{6}+3x=x+\frac{4\pi}{9}+k\pi$ với $k$ nguyên
$\Rightarrow x=\frac{5}{36}\pi + \frac{k}{2}\pi$ với $k$ nguyên.
Tính:
\(a)\left(-2x^2\right)\cdot\left(3x-4x^3+7-x^2\right)\)
\(b)\left(x+3\right)\cdot\left(2x^2-3x-5\right)\)
\(c)\left(-6x^5+7x^4-6x^3\right):3x^3\)
\(d)\left(9x^2-4\right):\left(3x+2\right)\)
\(e)\left(2x^4-13x^3+15x^2+11x-3\right):\left(x^2-4x-3\right)\)
a: \(=-2x^2\cdot3x+2x^2\cdot4X^3-2x^2\cdot7+2x^2\cdot x^2\)
\(=8x^5+2x^4-6x^3-14x^2\)
b: \(=2x^3-3x^2-5x+6x^2-9x-15\)
\(=2x^3+3x^2-14x-15\)
c: \(=\dfrac{-6x^5}{3x^3}+\dfrac{7x^4}{3x^3}-\dfrac{6x^3}{3x^3}=-2x^2+\dfrac{7}{3}x-2\)
d: \(=\dfrac{\left(3x-2\right)\left(3x+2\right)}{3x+2}=3x-2\)
e: \(=\dfrac{2x^4-8x^3-6x^2-5x^3+20x^2+15x+x^2-4x-3}{x^2-4x-3}\)
=2x^2-5x+1
Rút gọn các phân thức:
a)\(\dfrac{14xy^5\left(2x-3y\right)}{21x^2y\left(2x-3y\right)^2}\) b)\(\dfrac{8xy\left(3x-1\right)^3}{12x^3\left(1-3x\right)}\)
c) \(\dfrac{20x^2-45
}{\left(2x+3\right)^2}\) d) \(\dfrac{5x^2-10xy}{2\left(2y-x\right)^3}\)
\(a,=\dfrac{2y^4}{3x\left(2x-3y\right)}\\ b,=-\dfrac{2y\left(3x-1\right)^2}{3x^2}\\ c,=\dfrac{5\left(4x^2-9\right)}{\left(2x+3\right)^2}=\dfrac{5\left(2x-3\right)\left(2x+3\right)}{\left(2x+3\right)^2}=\dfrac{5\left(2x-3\right)}{2x+3}\\ d,=\dfrac{5x\left(x-2y\right)}{-2\left(x-2y\right)^3}=-\dfrac{5x}{2\left(x-2y\right)^2}\)